Национальный исследовательский университет «Высшая школа экономики»

Факультет Прикладная математика и кибернетика

Кафедра Механика и математическое моделирование

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

На тему:

«Расчет и анализ напряженно-деформированного состояния при прокатке с помощью пространственных моделей и систем проектирования»

Студент группы № <u>103</u> <u>Ларичев Сергей Андреевич</u>

Научный руководитель к.т.н. Аксенов Сергей Алексеевич

Москва 2013

Оглавление	
Введение	3 5
Глава 2. Основные соотношения МК'Э	
2 1 Pagnemaionine vnastering	7
2.2. Обобщенная плоская залача формоизменения	,q
Глава 3. Метол 2.5D моленирования лля процессов прокатки	
Глава 4. Приклалное программное обеспечение	17
4.1. Этапы решения залани с помощью МКЭ. Вилы коненных элементов	····.22 22
4.1.1 Преимущества DEFORM-3D	24
4.2 Этапы молецирования прокатки, в программном комплексе DEFORM-3D	·····24
4.2. Этапы моделирования прокатки в программном комплексе DEI ОКИ-5D	35
4.5. Этаны моделирования прокатки в программе Spien-К	
	11
5.1. Выбор коэффиционта трония	
5.1. Beloop Rosponduluenta Tperius	
	54
5.2.1. Общетие андба из 10 им	
5.2.1 Обжатие сляба на 10 мм	
5.2.2 OOwarree Chaoa Ha 5 MM	
5.3. Гасчет прокатки в программе Spien-К для сляоов квадратного сечения	
5.5.1 Обжатие сляба на 10 мм	
5.4. Decuser representation and DEEORM 2D	04
5.4. Pacter прокатки в программном комплексе DEFORM-5D	(0)
для слябов круглого сечения	09
5.4.1 Обжатие сляба на 10 мм	69 70
5.4.2 Oowarue chaoa ha 5 MM.	12
5.5. Расчет прокатки в программе Spien-к для сляоов круглого сечения	
5.5.1 Обжатие сляба на 10 мм	
5.5.2 Обжатие сляба на 5 мм	
I лава 6. Анализ и сравнение результатов прокатки в DEFORM-3D и Splen-R	82
6.1. Обжатие слябов квадратного сечения на 10 мм	82
6.2. Обжатие слябов квадратного сечения на 5 мм	95
6.3. Обжатие слябов круглого сечения на 10 мм	107
6.4. Обжатие слябов круглого сечения на 5 мм	118
Заключение	127
Список литературы	128

Введение

Прокатка металлов - это принцип обработки металлов или сплавов давлением, который заключается в обжатии их между крутящимися валками прокатных станов. Валки имеют в основном форму цилиндров, гладких или с нарезанными на них углублениями, которые при совмещении двух валков образуют так называемые калибры. Иными словами *прокатка* – это процесс формоизменения материала, обладающего запасом пластичности, при прохождении его между вращающимися приводными валками, зазор между которыми меньше толщины задаваемой заготовки.

Исторически, исследования процессов прокатки, как и других процессов обработки металлов давлением, базировались на эмпирическом подходе (методе проб и ошибок), который обладает рядом серьезных недостатков. В первую очередь это его дороговизна. Реализация натурных экспериментов требует существенных материальных и временных затрат.

С развитием такой области, как математическое моделирование, стало возможным строить математические модели для процессов обработки металлов давлением, а в частности для прокатки. Производить расчеты таких обрабатывать получены данные удобней и моделей и быстрее на вычислительных машинах. В связи с этим стали появляться специальные программы, которые используют 3D модели для расчетов процессов прокатки, штамповки и т.п. Самые известные из таких вычислительных систем это: DEFORM, FORGE, QFORM, MARC. Используя эти программы, пользователь может делать любое количество экспериментов на компьютере, до получения нужного ему результата, который впоследствии будет применен на производстве. Но есть и отрицательные стороны у программ, использующих 3D модели: ОНИ требуют больших вычислительных мощностей и не малое количество машинного времени для расчета.

В связи с этим стала разрабатываться технология 2.5.D моделирования, которая реализовалась в программе Splen-R. При таком способе

моделирования, значительная экономия время расчета достигается за счет использования ряда априорных гипотез. В частности, считается, что любое плоское поперечное сечение в процессе прокатки остается плоским. Таким образом, вместо решения громоздкой пространственной задачи можно последовательно решать обобщенные плоские задачи в поперечных сечениях очага деформации. Реализация подхода 2.5D в его первоначальной постановке не учитывает сдвиговых деформаций (ось х \mathcal{E}_{xz} И \mathcal{E}_{yz} сонаправлена оси прокатки, ось у – направлена вверх), в результате ряд важных эффектов, возникающих в процессе прокатки, не учитывается данной моделью. Однако эти эффекты могут быть учтены путем введения виртуальных распределенных в объеме материала сил, умноженных на соответствующий поправочный коэффициент. В работе проведен анализ влияния этого коэффициента на адекватность получаемых результатов и выбор его оптимального значения.

Целью данной работы является расчет и анализ процесса прокатки с помощью коммерческой САПР DEFORM и программного продукта Splen-R (реализующий методику 2.5D). Провести сравнение полученных результатов и определить состоятельность метода 2.5D по отношению к методу 3D. Определить на конкретных примерах положительные и отрицательные стороны метода 2.5D. Попытаться подобрать оптимальное для расчетов значение поправочного коэффициента, который используется в программе Splen-R. Т.е. такой коэффициент, при котором расчеты, полученные в Deform, максимально совпадут с расчетами из Splen.

Глава 1. Математическая модель деформации при прокатке

Пусть тело занимает область с границей Г в декартовой системе координат хуz в некоторый момент времени t.

Обозначим вектор поверхностных сил, действующий на части граничной поверхности Γ_{σ} , через $_{n} =$, вектор скоростей перемещений, заданный на другой части граничной поверхности Γ_{v} , через $_{n} =$. Здесь . Здесь (i = 1,2,3) единичные вектора, направленный вдоль осей координат х,у,z. На участке границы $\Gamma_{\sigma v}$ заданы смешанные условия контактного типа. Естественно предполагается, что $\Gamma_{\sigma} + \Gamma_{v} + \Gamma_{\sigma v}$. Тогда граничные условия на контуре деформируемого тела могут быть записаны следующим образом:

$$n = n, n = =$$
 Ha $\Gamma_{\sigma};$
= , $n =$ Ha $\Gamma_{v};$ (1)
 $n = = , n =$ Ha $\Gamma_{\sigma v};$

$$i,j,\alpha,\beta =$$

При этом на Г_о, в каждом из направлений вдоль осей координат должно быть задано либо кинетическое, либо динамическое граничное условие.

- компоненты тензора напряжений;

- компоненты тензора напряжений;

- скорость перемещения частиц среды.

Девиаторы напряжений и скорости деформации обозначим волнистой чертой сверху:

, – (2)

, – –

Где

- скорость относительного изменения объема,

- символ Кронекера.

Соотношения Коши имеют вид:

- — . (3)

Инварианты девиаторов :

Девиаторы напряжений и скорости деформации пропорциональны:

(5)

Возводя левый и правые части в квадрат и используя (4), получим:

Тогда:

--- (7)

Обобщенный закон Гука:

где - коэффициент объемного сжатия;

,

- относительное изменение объема.

Глава 2. Основные соотношения МКЭ

2.1. Разрешающие уравнения

Основная идея МКЭ состоит в замене непрерывной функции конечным числом ее значений, определенных в узлах сетки. Для этого область разбивается на элементы, которые соединяются в конечном числе границе. Скорости перемещения узлов, расположенных на ИХ аппроксимируются некоторой функцией, определяющей скорости перемещения внутри элемента через скорости перемещения его узлов. [1]

Рассмотрим конечный элемент с узловыми точками i,j,m и т.д. и прямолинейными границами. Пусть скорость перемещения в любой точке внутри элемента задаются:

Где являются в общем случае функциями положения, а представляют собой скорости перемещения узловых точек рассматриваемого элемента.

Также справедливы соотношения:

(9) (10)

Матрица [D] получается из соотношений, связывающих напряжения и скорость деформации.

Для получения системы разрешающих уравнений относительно узловых скоростей перемещений используется принцип минимума полной энергии (принцип возможных изменений деформированного состояния) [2]. Простейший способ реализации этого принципа состоит в задании произвольного (виртуального) узлового перемещения и приравнивания

внешней и внутренней работы, совершаемых различными силами и на этом перемещении.[1]

Пусть d - виртуальная скорость в узле, a d Δt - виртуальное перемещение в узле на малом временном отрезке Δt . Тогда с помощью (8) и (9) получим:

d $\Delta t = \Delta t, d \Delta t = \Delta t.$ (11)

Работа, совершаемая узловыми силами:

(12)

Распределенная внешняя нагрузка на единицу площади, тогда ее работа будет равна:

, где = - . (13)

Внутренняя работа напряжений и распределенных сил, приходящаяся на единицу объема, равна

или, с учетом (11)

$$(\mathbf{d}\{\boldsymbol{\delta}\}^{\mathbf{e}})^{\mathrm{T}} \qquad . \tag{15}$$

Приравняв работу внешних сил к суммарной внутренней работе, получаемой интегрированием по объему элемента, и подставляя (10) получим:

 +
 =
 +
 +
 (16)

 Здесь [k]^e =
 матрица жесткости элемента, а второе и третье

 слагаемые в правой части – узловые силы.

Введем матрицу сил:

(17)

Обобщим теперь все предыдущие рассуждения на все сплошное тело. Пусть:

$$\{f\} = \{ \}$$
(18)

Внешняя работа на виртуальных перемещениях всех узлов равняется:

$$d\{ \}^{T} \{R\} -$$
 (19)

Внутренняя виртуальная работа:

(20)

После учета (9), (10) и (18) и приравнивая внутреннюю и внешнюю работы, получим основное уравнении МКЭ:

$$[K] = \{R\} + \{F\}_{B} - - \{F\}_{P}.$$
(21)

Произвольный элемент матрицы жесткости имеет вид:

$$[\mathbf{K}_{ij}] = \tag{22}$$

 Γ де [K_{ij}] = , узловые силы равны:

2.2 Обобщенная плоская задача формоизменения

Для любого фиксированного значения z = Const, взятого в очаге деформации вдоль оси Z, имеют место одновременно две группы равенств.

1. Для компонент тензора напряжений:

$$\begin{aligned}
\sigma_x &= \sigma_x(x, y); \\
\sigma_y &= \sigma_y(x, y); \\
\sigma_{xy} &= \sigma_{xy}(x, y); \\
\sigma_z &= \sigma_z(x, y); \\
\sigma_{xz} &= \sigma_{yz} = 0.
\end{aligned}$$
(24)

2. Для компонент тензора скорости деформаций:

$$\begin{cases} \dot{\varepsilon}_{x} = \dot{\varepsilon}_{x}(x, y); \\ \dot{\varepsilon}_{y} = \dot{\varepsilon}_{y}(x, y); \\ \dot{\varepsilon}_{xy} = \dot{\varepsilon}_{xy}(x, y); \\ \dot{\varepsilon}_{xz} = \dot{\varepsilon}_{yz} = 0; \\ \dot{\varepsilon}_{z} = C = Const. \end{cases}$$

$$(25)$$

Тогда от 6 уравнений совместности Сен-Венана:

$$\left\{ \frac{\partial^{2} \dot{\varepsilon}_{x}}{\partial y^{2}} + \frac{\partial^{2} \dot{\varepsilon}_{y}}{\partial x^{2}} = 2 \frac{\partial^{2} \dot{\varepsilon}_{xz}}{\partial x \partial y}; \\
\frac{\partial^{2} \dot{\varepsilon}_{y}}{\partial z^{2}} + \frac{\partial^{2} \dot{\varepsilon}_{z}}{\partial y^{2}} = 2 \frac{\partial^{2} \dot{\varepsilon}_{yz}}{\partial y \partial z}; \\
\frac{\partial^{2} \dot{\varepsilon}_{z}}{\partial x^{2}} + \frac{\partial^{2} \dot{\varepsilon}_{x}}{\partial z^{2}} = 2 \frac{\partial^{2} \dot{\varepsilon}_{zx}}{\partial z \partial x}; \\
\frac{\partial^{2} \dot{\varepsilon}_{x}}{\partial y \partial z} = \frac{\partial}{\partial x} \left(- \frac{\partial \dot{\varepsilon}_{yz}}{\partial x} + \frac{\partial \dot{\varepsilon}_{xy}}{\partial z} + \frac{\partial \dot{\varepsilon}_{xz}}{\partial y} \right); \\
\frac{\partial^{2} \dot{\varepsilon}_{y}}{\partial z \partial x} = \frac{\partial}{\partial x} \left(- \frac{\partial \dot{\varepsilon}_{zx}}{\partial y} + \frac{\partial \dot{\varepsilon}_{yz}}{\partial x} + \frac{\partial \dot{\varepsilon}_{zy}}{\partial z} \right); \\
\frac{\partial^{2} \dot{\varepsilon}_{z}}{\partial x \partial z} = \frac{\partial}{\partial x} \left(- \frac{\partial \dot{\varepsilon}_{zx}}{\partial y} + \frac{\partial \dot{\varepsilon}_{zx}}{\partial x} + \frac{\partial \dot{\varepsilon}_{zy}}{\partial z} \right); \\$$
(26)

остается 1:

$$\frac{\partial^2 \dot{\varepsilon}_x}{\partial y^2} + \frac{\partial^2 \dot{\varepsilon}_y}{\partial x^2} = 2 \frac{\partial^2 \dot{\varepsilon}_{xy}}{\partial x \partial y} .$$
 (27)

Остальные тождественно удовлетворятся.

$$\varepsilon_z = \frac{\partial v_z}{\partial z} = C = Const \Longrightarrow v_z = C \cdot z + f(x, y) .$$
(28)

f(*x*, *y*) в уравнении (28) – линейная, значит соответствует пространственным перемещениям тела, как абсолютно твердого, поэтому при изучении деформаций ее можно положить равной нулю.

Тогда компоненты скоростей перемещений запишутся в виде:

$$v_x = q_x(x, y),$$

$$v_y = q_y(x, y),$$

$$v_z = Cz.$$
(29)

Пусть x и y координаты точки при z = Const, а u и v- соответствующие скорости перемещения. Таким образом, (с учетом (27), (31)) скорости деформации выражаются через скорости перемещения:

$$\dot{\varepsilon}_{x} = \frac{\partial v_{x}}{\partial x}, \quad \dot{\varepsilon}_{y} = \frac{\partial v_{y}}{\partial y}, \quad \dot{\varepsilon}_{z} = C, \quad \dot{\varepsilon}_{xy} = \frac{1}{2}\dot{\gamma}_{xy},$$

$$\dot{\gamma}_{xy} = \frac{\partial v_{x}}{\partial y} + \frac{\partial v_{y}}{\partial x}, \quad \dot{\varepsilon}_{xz} = \dot{\varepsilon}_{yz} = 0.$$
(30)

Связь между напряжениями и скоростями деформаций, описывающая состояние среды, выглядит так:

$$\begin{cases} \sigma_{x} = 2\mu \cdot \dot{\varepsilon}_{x} + (K \cdot \Delta t - \frac{2}{3}\mu) \cdot \dot{\theta} + \sigma^{*}, \\ \sigma_{y} = 2\mu \cdot \dot{\varepsilon}_{y} + (K \cdot \Delta t - \frac{2}{3}\mu) \cdot \dot{\theta} + \sigma^{*}, \\ \sigma_{xy} = \mu \cdot \dot{\gamma}_{xy}, \end{cases}$$
(31)

заметим:

$$\sigma_{zx} = \sigma_{zy} = 0, \qquad \sigma_z = 2\mu \cdot c + (K \cdot \Delta t - \frac{2}{3}\mu) \cdot \dot{\theta} + \sigma^*.$$
(32)

Здесь $\dot{\theta}$ характеризует скорость изменения объема:

$$\dot{\theta} = \dot{\varepsilon}_x + \dot{\varepsilon}_y + \dot{\varepsilon}_z = 3\dot{\varepsilon} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + C \quad , \tag{33}$$

где *К* - коэффициент объемного сжатия; μ - коэффициент вязкости, который есть функция интенсивности скорости деформации, и зависит от ряда физических параметров $\mu = \mu(\dot{\varepsilon}_i, \varepsilon_i, T)$; σ^* - накопленное гидростатическое давление.

Рассмотрим элемент i, j ,m представляющий собой треугольник с шестью компонентами узловых перемещений (по две в каждом узле). Аппроксимирующие функции [*N*] (8), для случая разбиения области на треугольные в поперечном сечении торы, имеют вид:

$$N_{i} = \frac{a_{i} + b_{i}x + c_{i}y}{2\Delta}, \quad \Gamma \exists e \begin{cases} a_{i} = x_{j}y_{m} - x_{m}y_{j}, \\ b_{i} = y_{j} - y_{m}, \\ c_{i} = x_{m} - x_{j}, \end{cases} a \quad 2\Delta = \begin{vmatrix} 1 & x_{i} & y_{i} \\ 1 & x_{j} & y_{j} \\ 1 & x_{m} & y_{m} \end{vmatrix}.$$
(34)

Уравнение (8) в более полной матричной форме запишется:

$$\{f\}^{e} = \begin{cases} v_{x} \\ v_{y} \end{cases}^{e} = \begin{bmatrix} N_{i}^{(e)} & 0 & N_{j}^{(e)} & 0 & N_{m}^{(e)} & 0 \\ 0 & N_{i}^{(e)} & 0 & N_{j}^{(e)} & 0 & N_{m}^{(e)} \end{bmatrix} \cdot \begin{cases} u_{x}^{i} \\ v_{y}^{i} \\ v_{x}^{j} \\ v_{y}^{j} \\ v_{x}^{m} \\ v_{y}^{m} \\ v_{y}^{m} \end{cases}$$
(35)

Используя (30), представим скорость деформации в матричном виде:

$$\{\dot{\varepsilon}\}^{e} = \begin{cases} \dot{\varepsilon}_{x} \\ \dot{\varepsilon}_{y} \\ \dot{\gamma}_{xy} \end{cases} = \begin{cases} \frac{\partial v_{x}}{\partial x} \\ \frac{\partial v_{y}}{\partial y} \\ \frac{\partial v_{x}}{\partial y} + \frac{\partial v_{y}}{\partial x} \end{cases}.$$
 (36)

Зная вид функции формы (34), можно определить компоненты матрицы [В] в (9). Дифференцированием (35) с учетом (36) получим:

$$\{\dot{\varepsilon}\}^{e} = \begin{bmatrix} \frac{\partial N_{i}}{\partial x} & 0 & \frac{\partial N_{j}}{\partial x} & 0 & \frac{\partial N_{m}}{\partial x} & 0\\ 0 & \frac{\partial N_{i}}{\partial y} & 0 & \frac{\partial N_{j}}{\partial y} & 0 & \frac{\partial N_{m}}{\partial y}\\ \frac{\partial N_{i}}{\partial y} & \frac{\partial N_{i}}{\partial x} & \frac{\partial N_{j}}{\partial y} & \frac{\partial N_{j}}{\partial x} & \frac{\partial N_{m}}{\partial y} & \frac{\partial N_{m}}{\partial x} \end{bmatrix} \cdot \begin{bmatrix} u_{x}^{i} \\ v_{y}^{j} \\ v_{x}^{m} \\ v_{y}^{m} \end{bmatrix} = \\ = \frac{1}{2\Delta} \begin{bmatrix} b_{i} & 0 & b_{i} & 0 & b_{i} & 0\\ 0 & c_{i} & 0 & c_{i} & 0 & c_{i} \\ c_{i} & b_{i} & c_{i} & b_{i} & c_{i} & b_{i} \end{bmatrix} \cdot \{U\}^{e} \\ \begin{bmatrix} B_{i} \end{bmatrix} = \begin{bmatrix} \frac{b_{i}}{2\Delta} & 0\\ 0 & \frac{c_{i}}{2\Delta} \\ \frac{c_{i}}{2\Delta} & \frac{b_{i}}{2\Delta} \end{bmatrix} .$$
(38)

Аналогично, используя (31), определим матрицу [D] в (22) и вектор $\{\sigma_0\}$:

$$[D] = \begin{bmatrix} 2\mu + k_1 & k_1 & 0 \\ k_1 & 2\mu + k_1 & 0 \\ 0 & 0 & \mu \end{bmatrix}, \quad \{\sigma_0\} = \begin{cases} \sigma^* \\ \sigma^* \\ 0 \end{cases} + \begin{cases} k_1 \cdot C \\ k_1 \cdot C \\ 0 \end{cases}, \quad (39)$$

здесь $k_1 = K \cdot \Delta t - \frac{2}{3}\mu$.

Для определения матрицы жесткости вычислим:

$$[M_{i}] = [D][B_{i}] = \begin{bmatrix} \frac{b_{i}(2\mu^{e} + k_{1})}{2\Delta} & \frac{c_{i} \cdot k_{1}}{2\Delta} \\ \frac{b_{i} \cdot k_{1}}{2\Delta} & \frac{c_{i}(2\mu^{e} + k_{1})}{2\Delta} \\ \frac{c_{i} \cdot \mu^{e}}{2\Delta} & \frac{b_{i} \cdot \mu^{e}}{2\Delta} \end{bmatrix}.$$

$$(40)$$

Выполнив транспонирование матрицы [В]:

$$\begin{bmatrix} B_j \end{bmatrix}^T = \begin{bmatrix} \frac{b_j}{2\Delta} & 0 & \frac{c_j}{2\Delta} \\ 0 & \frac{c_j}{2\Delta} & \frac{b_j}{2\Delta} \end{bmatrix}.$$
(41)

Вычислим произведение:

$$[B_{j}]^{T}[D][B_{i}] = \begin{bmatrix} \frac{b_{i}b_{j}(2\mu^{e}+k_{1})}{4\Delta^{2}} + \frac{c_{i}c_{j}\cdot\mu^{e}}{4\Delta^{2}} & \frac{b_{j}c_{i}\cdot k_{1}}{4\Delta^{2}} + \frac{c_{j}b_{i}\cdot\mu^{e}}{4\Delta^{2}} \\ \frac{b_{i}c_{j}\cdot k_{1}}{4\Delta^{2}} + \frac{c_{i}b_{j}\cdot\mu^{e}}{4\Delta^{2}} & \frac{c_{i}c_{j}(2\mu^{e}+k_{1})}{4\Delta^{2}} + \frac{b_{i}b_{j}\cdot\mu^{e}}{4\Delta^{2}} \end{bmatrix}$$
(42)

Матрица жесткости для е-го элемента имеет вид:

$$[A]^{e} = \begin{bmatrix} [A_{ii}]^{e} & [A_{ij}]^{e} & [A_{im}]^{e} \\ [A_{ji}]^{e} & [A_{jj}]^{e} & [A_{jm}]^{e} \\ [A_{mi}]^{e} & [A_{mj}]^{e} & [A_{mm}]^{e} \end{bmatrix},$$
(43)

где: $[A_{ij}]^e$ - подматрицы (2х2), вида:

$$[A_{ij}]^{e} = \int_{S^{(e)}} [B_{j}]^{T} [D] [B_{i}] ds.$$
(44)

Здесь, интегрирование проводится по площади треугольника i, j, m. Поскольку матрицы [*B*] и [*D*] в подынтегральном выражении не зависят от переменных интегрирования, получим:

$$[A_{ij}]^e = [B_i]^T [D] [B_j] \cdot \Delta, \qquad (45)$$

где Δ - площадь треугольника.

Таким образом:

$$[A_{ij}]^{e} = \begin{bmatrix} a_{ij}^{11(e)} & a_{ij}^{12(e)} \\ a_{ij}^{21(e)} & a_{ij}^{22(e)} \end{bmatrix},$$
(46)

где:

$$a_{ij}^{11^{(e)}} = \frac{b_i b_j}{4\Delta} \left(\frac{4}{3} \mu^e + K\Delta t \right) + \frac{c_i c_j}{4\Delta} \mu^e,$$

$$a_{ij}^{12^{(e)}} = \frac{c_i b_j}{4\Delta} \left(K\Delta t - \frac{2}{3} \mu^e \right) + \frac{c_j b_i}{4\Delta} \mu^e,$$

$$a_{ij}^{21^{(e)}} = \frac{c_j b_i}{4\Delta} \left(K\Delta t - \frac{2}{3} \mu^e \right) + \frac{c_i b_j}{4\Delta} \mu^e,$$

$$a_{ij}^{22^{(e)}} = \frac{c_i c_j}{4\Delta} \left(\frac{4}{3} \mu^e + K\Delta t \right) + \frac{b_i b_j}{4\Delta} \mu^e.$$
(47)

Локальные матрицы жесткости каждого элемента e вносятся в глобальную матрицу жесткости в соответствии с глобальной нумерацией элемента. Суммирование производится следующим образом. Пусть g(e,i) - номер узла в глобальной нумерации отвечающий *i*-ому узлу элемента e, N - число узлов сетки конечных элементов.[2] Тогда:

$$a_{(2n)(2m)} = \sum_{e} \sum_{i,j \in g(e,i)=n \atop g(e,j)=m} a_{ij}^{22^{(e)}},$$

$$a_{(2n-1)(2m)} = \sum_{e} \sum_{i,j \in g(e,i)=n \atop g(e,j)=m} a_{ij}^{12^{(e)}},$$

$$a_{(2n)(2m-1)} = \sum_{e} \sum_{i,j \in g(e,i)=n \atop g(e,j)=m} a_{ij}^{21^{(e)}},$$

$$a_{(2n-1)(2m-1)} = \sum_{e} \sum_{i,j \in g(e,i)=n \atop g(e,j)=m} a_{ij}^{11^{(e)}},$$
(48)

где n и m принимают значения от 1 до N.

Теперь необходимо определить узловые силы, входящие в правую часть основного уравнения (2.21). Вклад гидростатического давления и известной третьей компоненты *С* учитывается следующим образом:

$$\{F_{j}\}_{\sigma_{0}} = \int_{V} [B_{j}]^{T} \{\sigma_{0}\} dV = \int_{V} \begin{bmatrix} \frac{b_{j}}{2\Delta} & 0 & \frac{c_{j}}{2\Delta} \\ 0 & \frac{c_{j}}{2\Delta} & \frac{b_{j}}{2\Delta} \end{bmatrix} \cdot \begin{bmatrix} \sigma^{*} + k_{1} \cdot C \\ \sigma^{*} + k_{1} \cdot C \\ 0 \end{bmatrix} dV =$$

$$= \Delta \cdot h \cdot \begin{cases} \frac{b_{j}}{2\Delta} (\sigma^{*} + k_{1} \cdot C) \\ \frac{c_{j}}{2\Delta} (\sigma^{*} + k_{1} \cdot C) \end{cases} = \begin{cases} \frac{1}{2} b_{j} \left[\sigma^{*} + (K\Delta t - \frac{2}{3}\mu) \cdot C \right] \\ \frac{1}{2} c_{j} \left[\sigma^{*} + (K\Delta t - \frac{2}{3}\mu) \cdot C \right] \end{cases}$$

$$(49)$$

Здесь σ^* находится по алгоритму:

$$\sigma_{1}^{*} = K \cdot \Delta t \cdot \theta = K \cdot \Delta t \cdot \left(\frac{\partial v_{x}}{\partial x} + \frac{\partial v_{y}}{\partial y} + C_{1}\right),$$

$$\sigma_{n}^{*} = \sigma_{1}^{*} + \sum_{z=2}^{n-1} \sigma_{z}^{*} + K \cdot \Delta t \cdot \left(\frac{\partial v_{x}}{\partial x} + \frac{\partial v_{y}}{\partial y} + C_{n}\right).$$
(50)

Вектор массовых сил для треугольного элемента вычисляется следующим образом:

$$\{F\}_{P} = -\int_{S} \begin{bmatrix} N_{i} & 0\\ 0 & N_{i}\\ N_{j} & 0\\ 0 & N_{j}\\ N_{m} & 0\\ 0 & N_{m} \end{bmatrix} \cdot \begin{cases} P_{x}\\ P_{y}\\ P_{y} \end{cases} ds = -\frac{\Delta}{3} \begin{cases} P_{x}\\ P_{y}\\ P_{x}\\ P_{y}\\ P_{x}\\ P_{y} \end{cases}$$
(51)

Определим вклад от поверхностных сил. Пусть на стороне элемента между узлами i и j действуют равномерно распределенные нагрузки интенсивности g_x параллельно оси X и интенсивности g_y параллельной оси Y. [2] Тогда:

$$\{F\}_{B} = -\int_{\Gamma} [N]^{T} \{g\} d\Gamma = \int_{\Gamma} \begin{bmatrix} N_{i} & 0 \\ 0 & N_{i} \\ N_{j} & 0 \\ 0 & N_{j} \\ N_{m} & 0 \\ 0 & N_{m} \end{bmatrix} \cdot \begin{cases} g_{x} \\ g_{y} \\ g_{y} \end{cases} d\Gamma = \frac{L_{ij}}{2} \begin{cases} g_{x} \\ g_{y} \\ g_{x} \\ g_{y} \\ 0 \\ 0 \end{cases},$$
(52)

где $L_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$ - расстояние между узлами *i* и *j*.

Компоненты результирующей силы в направлении осей X и Y равны соответственно $\frac{1}{2}g_{x}L_{ij}$ и $\frac{1}{2}g_{y}L_{ij}$. Как видно из формулы (52), на каждый из рассматриваемых узлов приходится по половине каждой компоненты результирующей силы.

Таким образом, определены все матричные соотношения (22) и (23), входящие в основное уравнение (21).

Глава 3. Метод 2.5D моделирования для процессов прокатки

Сущность рассматриваемого подхода сводится к следующему: в ряде случаев можно без заметной потери точности задать одно из перемещений в аналитическом виде с незначительным числом неизвестных параметров и тем самым сократить порядок системы разрешающих уравнений или вообще свести решение объёмной задачи к последовательности решений обобщенных двумерных задач. [3]

Пусть начало системы координат 0 с поперечной *x*, вертикальной *y* и продольной *z* осями находится в центре сечения полосы на её выходе из валков (рис. 1а).[3]

Используемая методика построения модели напряженнодеформированного состояния опирается на следующую гипотезу. Для любого поперечного сечения очага деформации Δz (рис. 1), имеющего малую толщину dz, значение $\dot{\varepsilon}_z$, характеризующее скорость деформации в направлении прокатки, постоянно: $\dot{\varepsilon}_z|_{z=\tilde{z}} = C$. В каждом конкретном сечении Δz компоненты скорости перемещения имеют следующий вид:

$$v_x = v_x(x, y); \quad v_y = v_y(x, y); \quad v_z = C\overline{z}; \quad \overline{z} \in [z, z + \Delta z].$$
 (53)

Рис. 1. Схема очага деформации при продольной прокатке (а) и напряжения, действующие на элемент малой толщины (b)

Таким образом, пространственное поле скоростей перемещения в очаге деформации разделяется в сечении Δz на две составляющие. Распределение

скоростей $\{v_x, v_y\}$ в поперечных сечениях очага деформации определяется при решении обобщенной задачи с помощью метода конечных элементов. Компонента скорости v_z в направлении прокатки определяется при минимизации функционала составленного на основании уравнения равновесия сечения Δz . От исходной пространственной задачи мы перешли к последовательности обобщенно-плоских задач в каждом сечении Δz , которые могут быть решены методом конечных элементов в 2D.[3]

Конечная скорость продольного перемещения частиц прокатываемого материала на интервале $\Delta z_i = (z_{i-1}, z_i)$ определяется соотношением:

$$v_{z}^{[i]} = \sum_{k=0}^{i-1} C_{k} |z_{k+1} - z_{k}| + C_{i}(z - z_{i}), \qquad (54)$$

Рассмотрим силы и напряжения, действующие на элемент, выделенный сечениями z и z + dz, изображенный на рис. 1b. Составим уравнение равновесия сил, действующих на элемент Δz в проекции на ось 0z.

$$\Phi_{z} = \int_{S} (d\sigma_{z}) dx dy + \int_{\Gamma} (\sigma_{nz} + \tau_{z}) d\gamma = 0, \qquad (55)$$

где σ_n, τ - нормальное и касательное напряжения, соответственно, действующие на элемент боковой поверхности; σ_{nz}, τ_z - соответствующие проекции этих напряжений на ось 0z; $d\sigma_z$ - изменение напряжения в направлении прокатки, в элементе, выделенном сечениями z и z+dz; S - поперечное сечение полосы прокатываемого металла. Γ - контактная поверхность элемента Δz .[3]

Граница интегрирования Γ определяется по зоне контакта металла с валками в поперечном сечении прокатываемого металла. При этом в каждом сечении проверяем принадлежность узла заготовки зоне контакта. Если в процессе счета σ_n меняет знак, то есть точка стремится оторваться от поверхности валка, то в этой точке принимаем $\sigma_n = 0$, а на следующем шаге считаем эту точку свободной.

Приведенная методика расчета напряженно-деформированного состояния материала при прокатке позволяет заменить решение трёхмерной задачи формоизменения последовательностью решений обобщенно плоских задач. Понятно, что некоторые специфические аспекты процесса прокатки не могут быть охвачены обобщенно плоской моделью и требуют отдельного рассмотрения. В рамках гипотезы плоских сечений, таким аспектом является влияние соседних сечений на сечение, в котором производится расчет.[3] Проанализируем компоненты тензора скорости деформации в рамках гипотезы плоских сечений (уравнение (53)):

$$\begin{cases} \mathcal{E}_{xx} = \frac{\partial v_x}{\partial x} = \mathcal{E}_{xx}(x, y); \\ \mathcal{E}_{yy} = \frac{\partial v_y}{\partial y} = \mathcal{E}_{yy}(x, y); \\ \mathcal{E}_{zz} = \frac{\partial v_z}{\partial z} = Const; \\ \mathcal{E}_{xy} = \frac{1}{2} \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right) = \mathcal{E}_{xy}(x, y); \\ \mathcal{E}_{xz} = \frac{1}{2} \left(\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right) = \frac{1}{2} \frac{\partial v_x}{\partial z} = \mathcal{E}_{xz}(x, y); \\ \mathcal{E}_{yz} = \frac{1}{2} \left(\frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \right) = \frac{1}{2} \frac{\partial v_x}{\partial z} = \mathcal{E}_{yz}(x, y). \end{cases}$$
(56)

Условия (56) отличаются от условий обобщенно-плоского деформированного состояния (25) уравнениями для определения компонент $\dot{\varepsilon}_{xz}$ и $\dot{\varepsilon}_{yz}$, которые в данном случае не должны равняться нолю. Это значит, что при обобщенно-плоском подходе к решению задачи мы вынуждены пренебречь значениями скоростей сдвиговых деформаций $\dot{\varepsilon}_{xz}$, $\dot{\varepsilon}_{yz}$ и предположить их равными нолю. Существует, однако, возможность расчета этих значений после решения задачи формоизменения в конкретном сечении на основе соотношений:

где v_x^k и v_y^k - компоненты скорости перемещения в *k* -ом сечении, v_x^{k-1} и v_y^{k-1} - компоненты скорости перемещения в сечении *k*-1, *dz* - расстояние между сечениями *k* и *k*-1.

Приведенный способ расчета скоростей сдвиговых деформаций чисто формальный, так как соответствующие сдвиговые напряжения не учитываются при решении задачи формоизменения. С другой стороны, этот способ может повысить адекватность прогнозов распределения интенсивности деформации по объему прокатываемого материала. Поскольку задача прокатки является существенно трехмерной, происходит поперечное искажение плоских сечений, которое несколько уменьшает значения вклад сдвиговых компонент (55). В связи с этим, предлагается ввести эмпирический поправочный коэффициент k₂<1, который позволит приблизить модель к реальности:

$$\mathcal{E}_{xz}(x, y) = k_2 \frac{1}{2} \frac{\left(v_x^k - v_x^{k-1}\right)}{dz},$$

$$\mathcal{E}_{yz}(x, y) = k_2 \frac{1}{2} \frac{\left(v_y^k - v_y^{k-1}\right)}{dz},$$
(58)

Применение данного подхода не оказывает существенного влияния на формоизменение материала. В тоже время, наличие сдвиговых деформаций и вызванных ими напряжений приводит к ряду важных эффектов при прокатке. Например эффект «двойной бочки», который возникает при относительно высокой высоте подката и малых радиусах валков. Для учета этих явлений предлагается ввести распределенную виртуальную силу, возникающую вследствие влияния сдвиговых деформаций. Эта сила будет зависеть от рассчитываемых компонент скорости v_x^k и v_y^k в каждой точке текущего сечения и выразится в прибавке к диагональным элементам матрицы жесткости следующего слагаемого:

$$a^* = \frac{\Delta}{9} \left(\frac{\mu^{(e)}}{(z_k)^2} + \frac{\mu^{(e)}}{(l_d - z_k)^2} \right).$$
(59)

Диагональные элементы матрицы жесткости рассчитываются теперь по формулам:

$$a_{ij}^{11^{(e)}} = \frac{b_i b_j}{4\Delta} \left(\frac{4}{3} \mu^e + K \Delta t \right) + \frac{c_i c_j}{4\Delta} \mu^e + k_1 a^*,$$

$$a_{ij}^{22^{(e)}} = \frac{c_i c_j}{4\Delta} \left(\frac{4}{3} \mu^e + K \Delta t \right) + \frac{b_i b_j}{4\Delta} \mu^e + k_1 a^*.$$
(60)

Эмпирический поправочный коэффициент k₁ регулирует влияние сдвиговых деформаций на величину учитываемой распределенной силы.

Коэффициенты k_1 и k_2 могут изменяться в пределах от 0 до 1, при равенстве нолю обоих коэффициентов задача сводится к обобщенно плоской.

Глава 4. Прикладное программное обеспечение

4.1. Этапы решения задачи с помощью МКЭ. Виды конечных элементов

Программное обеспечение, базирующиеся на методе конечных элементов, должно включать в той или иной степени функции модулей: ввода данных (препроцессора), вычислений (процессора), вывода результатов (постпроцессора).

В программном обеспечении систем автоматизированного проектирования функции ввода и вывода особенно развиты, так как они сокращают время получения данных и оценки результатов в ходе моделирования. Вычислительный модуль в основном использует элементы основной конфигурации технических средств: арифметический процессор, оперативную память, внешнюю память большой емкости.

Чаще всего встречается следующая организация программного обеспечения для метода конечных элементов:

1)единая программа для всех функций;

2)одна программа - для ввода и вывода, другая программа - для расчета;

3) отдельная программа на каждую функцию.

Использование единой программы, управляющей всеми функциями, позволяет осуществлять быстрый переход от одной процедуры к другой. Единая программа особенно эффективна в тех случаях, когда необходимо многочисленное повторение цикла ввод-расчет-вывод.

В следующем возможном варианте пользователь раздельно пользуется модулем ввода-вывода и модулем вычисления. Это позволяет ему производить расчеты с разделением времени.

Последний вариант представляет собой цепочку «препроцессор – процессор – постпроцессор». При этом можно предусмотреть использование нескольких препроцессоров, представляющих пользователю разные возможности.

Примеры программного обеспечения, реализующего метод конечных элементов: DEFORM-2D/3D, Code_Aster, Deal.II, Femap, LibMesh, LSDYNA,

Maxwell (Ansoft), MicroFe, Nastran(от Simens), NX Advanced Simulation, QForm 2D/3D, ANSYS.

МКЭ может быть представлен в виде трех последовательных этапов решения задачи: начальной подготовки (препроцессов); получение решений (решатель); обработка результатов моделирования (постпроцессов).

<u>Препроцессор</u>:

- Создается модель изделия (геометрическая и расчетная)
- Задаются свойства материала (модуль упругости, модуль сдвига расчета деформаций, коэффициент Пуассона и др.)
- Задаются силовые факторы (ограничения, нагрузки).
- Генерируется сеточная модель

<u>Решатель:</u>

• Запуск метода конечных элементов

<u>Постпроцессор:</u>

• Анализ результатов

Возможности препроцессора:

- создание простейшей геометрии и импорт из CAD систем сложной геометрии
- создание собственных и импорт сеток конечных элементов
- библиотека материалов с возможностью добавления новых материалов
- выбор моделей исследуемых процессов из перечня известных в области ОМД и подготовка данных для них
- Задание начальных и граничных условий исследуемого процесса
- Широкие возможности по установке параметров моделирования: количество шагов, шаг сохранения результата, критерии остановки процесса, переразбиение сетки.

Возможности решателя:

- автоматическое перестроение сетки
- распараллеливание процесса решения

Возможности постпроцессора:

- графическое представление результата вычисления по шагам (общее, в указанной точке, между двумя точками)
- определение направления течения материала
- вывод информации в качестве текстовых, графических и видео файлов.

Существуют разнообразные формы конечных элементво:

- тетраэдр 3х мерный, 4х гранный элемент с числом узлов 4 10
- бокс шестигранный 3х мерный элемент с количеством узлов 8 20.

4.1.1 Преимущества DEFORM-3D

- Возможность исследовать процессы со сложной картиной течения металла и сложным движением деформирующего инструмента.
- Наибольшие возможности среди остальных программ по моделированию структурно-фазовых превращений.
- Возможность построения траекторий перемещения точек деформируемого тела и учёт истории деформирования.
- Наибольшее распространение для моделирования процессов ОМД по всему миру.
- Возможность использования DEFORM 3D для решения комплексных задач.

4.2. Этапы моделирования прокатки в программном комплексе

DEFORM-3D

В программном комплексе DEFORM-3D существуют 3 основных этапа моделирования:

- Препроцессор
- Решатель
- Постпроцессор

Препроцессор служит для создания модели объекта исследования (геометрическая И расчетная), задача параметров модели сетка. температура, пластичность и др., характеристики контакта – коэффициент коэффициент теплопередачи, трения, определяются точки контакта заготовкой, производится инструмента с настройка решателя, осуществляется генерация баз данных.

В решателе происходит расчет поставленной задачи. Постпроцессор служит для обработки результатов моделирования. В нем возможно графическое представление результата вычисления по шагам (общее, в указанной точке, между двумя точками), определение направления течения материала, вывод информации в качестве текстовых, графических и видео файлов.

Рассмотрим каждый пункт подробно, применительно к процессу прокатки. В главе связанной с расчетами в Deform будет применяться такая же последовательность действий, с особенностями для каждого случая, которые будут указываться.

Запускаем Deform, и перед нами появляется главное окно (рис. 2):

Рис. 2. Главное окно Deform

В нем отображаются все ранее созданные базы данных (1), окно лога (2), меню препроцессор (3), процессор (решатель) (4), постпроцессор (5).

В меню 3 выбираем задачу, которую собираемся решать, в нашем случае это Shape Rolling. Задаче необходимо присвоить имя, в нашем случае – Roll (рис. 3).

unlore Detetere Descut		Problem ID	Block	Pre Processor
Spolar Darabade Hecent Daraba	30, mm,D8 30, mm,D8 35, mm,D8 35, mm,D4,SD8 40, mm,D8 40, mm,	oblem Setup m Loading		DEFORM-SO Pre Machinia (Oxtoa) Earning Autoria Die Stees Analysis Cosato Shase Rolling Hing Rolling Hing Rolling
	60_mm.DB 60_mm_45mm.DB 70_mm_05mm.DB 70_mm_45mm.DB 00F_FROLL3_CS_MESH.KEY	New wizard problem Problem ID Roll		Tool 3 Inverse Heat Preform Wizard
	30.mmhm 10.mmhm 10.mm,45mmhm 10.mm,45mmhm 10.mm,45mmhm 10.mm,45mmhm 10.mm,45mmhm 10.mm,45mmhm 10.mm,45mmhm 10.mm,45mm 10.mm,45mmhm 10.mm,45mm 10.mm,45mm 10.mm,45mm 10.mm,45mm 10.mm,45mm 10.mm,45mm 10.mm,45mm 10.mm,45mm 10.ft, mm,45mm 10.ft, mm,45mm 10.ft, mm,45mm 10.ft, mm,45mm 10.ft, mm,45mm 10.ft, f, mm,45mm 10.ft, mm,45mm 10.ft, f, mm,45mm 10.f	Open with keyword and wazard files Open with database and wazard files <	Cancel	Simulator S Rua Rua (cotona) State Coninue Process Monitor Simulation Sizabics Add to Queue
	19950_mm.PNG 1950_mm_45_mm.htm 1950_mm_45_mm.PNG 1955_mm.htm 19955_mm.PNG	-		Save Post Processor S DEFORM-30 Post Microstructure

Рис. 3. Создание и присваивание имени новой задаче

Присвоив имя, нажимаем кнопку Next, откроется меню препроцессора для нашей задачи (рис. 4)

Рис. 4. Меню препроцессора

В появившемся меню выбираем Milti-Stand Rolling. Помним про единицы измерения (нам нужна система СИ). Нажимаем Next.

Далее появится меню расчета температуры (рис. 5):

Calculate temperature in (non - isothermal)	n workpiece and rolls	
Calculate temperature in (non - isothermal)	n workpiece only	
 Constant temperature (isothermal)	
1		

Рис. 5. Меню расчета температуры

В нашей задаче температура будет постоянной. Нажимаем Next и переходим в меню выбора модели заготовки.

Для ускорения расчетов выбираем четверть (рис. 6).

C Full		Half symmetry
C 0		
(+ Qua	arter symmetry	
	×	
-Roll star	nds	
Number	of stands: 1	alal
Tranbo	or o	* *
	````	
		<b>\</b>
Stand	Name	× direction location
1	RollStand1	
	RollStand1	

Рис. 6. Выбор модели заготовки

Следующий пункт – определение геометрии для валка: радиус, скругление, ширина и зазор (рис. 7).

		Project View
	Step -1	General MutuitstandShapeRolling (1)     Step-1 (-1)     General celoudions     Themaid celoudions     Hand design
Graphic A Summay (Message / Log /	Image: Source of the source	Cose     Ceale     Ce
	0	Close opr < Back Next >

Рис.7. Определение геометрии валка

Валок выбираем цилиндрической формы и нажимаем Next.

Появляется контур валка (рис. 8), который путем вращения вокруг своей даст нам 3D модель (рис. 9).



Рис. 8. Контур валка



Рис. 9. 3D модель валка

Далее задаем круговое движение валка (рис. 10).



Рис. 10.Задание кругового движения валка

В следующем меню задается длина и температура заготовки (рис. 11).



Рис. 11. Задается длина и температура заготовки

Далее надо определить геометрию заготовки, по умолчанию есть 2 типа параллелепипед (рис. 12) и цилиндр (рис. 13). Ввод размеров прост и понятен.

neral	_		Close
Bar		Bar	Create
Cylinder	RI	H Crigin point Y: 0	
	(R,Y)	Size Width (W): 25	
		Height (H):  25 Radius (if any)	

Рис. 12. Задание размеров для параллелепипеда

Bar		Cylinder	Create
6		X: 0 Y: 0	
Cylinder	R	R: 5	
	(8,9)	1.	

Рис. 13. Задание размеров для цилиндра

Примечание: С помощью программы SolidWorks можно создавать любые геометрии и импортировать их.

После определения геометрии появится контур заготовки (рис.14):



Рис.14. Контур заготовки

По заданному контуру будет построена 3D модель и сгенерирована сетка (рис. 15)



Рис.15. 3D модель заготовка с построенной сеткой

Category	Material label	Load
Aluminum 🔺	AISI4340JohnsonCook	
BetaMaterials	AISI4340-Machining	Cancel
Die_material	AISI-50100[1650-2200F(900-1200C)]	
Other	AISI-5115,COLD[70-400F(20-200C)]	
Stainless_steel	AISI-5115[750-2000F(400-1100C)]	
Steel	AISI-5120,COLD[70-1450F(20-800C)]	Doloto
Steel at Extent	AISI-5135H,COLD[70-550F(20-300C)]	Delete
Superalloy	AISI-5140[1450-2200F(800-1200C)]	
Titanium	AISI-5140_(800-1200C)	
Tool Material	AISI-52100,COLD[70-400F(20-200C)]	
• · · · · ·		More >>

Далее определяем материал заготовки (рис. 16)

Рис.16 Определение материала заготовки

Последний этап – это выбор количества шагов (рис. 17).

N	100	
Number of steps	1100	-
Step increment:	10	\$
Time per step	0.002	
C Stroke per step	0	
	·	
Stopping criteria		
Define stopping	plane	
Point: X 0	Y O Z O	
Normal: 🌾 🗙 dire	ection C - X directio	on

Рис. 17. Меню ввода количества шагов

Проект готов, осталось только нажать кнопку Generate DataBase (рис. 18)



Рис. 18. Готовый проект и создание базы данных

После этого база данных появится в списке в главном окне программы Deform.

Но нам нужна более тонкая настройка свойств, поэтому мы еще раз откроем

препроцессор и введем недостающие данные.

Во-первых, зададим свойства течения металла. Для задания свойств выбираем нужное нам уравнения течения металла и вводим константы (рис. 19).

외 File Input Viewport Display Model Tools View Options Help			×
	◆ ◆ Q Q Q Q Q   * ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	🖬 😹 🔥 🚇 🕴 🖗 💷	
	ten -1	Section 12 Constraints Stand-Shape-Rolling (1) Constraints Stand-Shape-Rolling (1) Constraints Stand Shape Figure (1) 20 Constraints Stand Shape Figure (1) 20 Constraint	Step -1
🖇 Material		? 🗙	
Material	iet III	🖇 Flow Stress Data	
AISI-50	100(1650-2200F(900-1200C))1	$\overline{\sigma}^{*} = c \overline{e}^{\pi} \hat{e}^{\pi} + y$ Constant (c) 72	OK Cancel
Plastic	Elastic   Thermal   Diffusion   Grain   Hardness   Elec./Mag.   Adv	Sitein exponent         [0,174           (n)         Sitein rate exponent (m)         [0,134           Constant (p)         [0	tange
Flow stres	• $\overline{\sigma} = c \overline{\sigma}^* \overline{c}^* + y$	Export	Graph>>
Yield func	tion type Von Mise:	Copy prop. Unit conv.	Iastic Standard  C Assign temperature  E50.2200FISIO-1200CII
Hadenin	zuwie Itotropic	Y	
	0	9. I	16 msec DEFORM-3D - Pre-processor

Рис. 19. Задание свойств течения металла



Во-вторых, зададим трение между заготовкой и валком (рис. 20)

Рис. 20. Задание трения между валком и заготовкой

Еще раз сохраняем базу данных. На этом этап препроцессор окончен, переходим к процессору (решатель). На этапе решения компьютер осуществляет необходимые расчеты, результат которых можно увидеть в постпроцессоре. Для перехода в постпроцессор необходимо в главном меню выделить уже посчитанную базу данных и нажать Deform 3D Post. Появится окно постпроцессора (рис. 21):



Рис. 21. Главное окно постпроцессора

В постпроцессоре можно просмотреть пошагово как проходила прокатка, крутить модель, увеличивать (уменьшать) модель, просматривать различные поля, строить сечения, осуществлять слежение за точками и т.д.

Для описания всех возможностей постпроцессора Deform 3D, можно отвести отдельную статью, в наших дальнейших расчетах нам потребуется построитель сечения и слежение за точками.

4.3. Этапы моделирования прокатки в программе Splen-R

Для входа в программу необходимо перейти в папку, которая содержит приложение SPLEN (Rolling 2.5) и двойным щелчком левой кнопки мыши запустить файл SPR.exe (рис. 22).



Рис. 22. Запуск программы Splen-R

Примечание: в этой же папке содержится еще ряд файлов (log0, log1, log3, Mesh2d.dll) и папка (Properties), их предназначение будет рассмотрено позже.

После запуска файла SPR.exe перед вами появится главное окно программы SPLEN-R (рис. 23).



Рис. 23. Главное окно SPLEN-R

Работу программы можно условно разделить на несколько этапов:

- Препроцессор
- Процессор
- Постпроцессор

Рассмотрим каждый пункт в отдельности.

Препроцессор.

На данном этапе программы задаются размеры заготовки и ее материал, а так же параметры прокатки.

## Задание размера заготовки.

В SPLEN (Rolling 2.5) задается размер сечения заготовки. Размеры задаются для ¹/₄ заготовки. Есть два варианты задания размеров:

a) Нажатием левой кнопки мыши зажать опорную точку и перетащить ее в нужную координату (рис. 24).



Рис. 24. Задание геометрии заготовки через опорные точки

Примечание: по умолчанию опорных точек 3 и находятся они в углах заготовки, но их можно добавить, выбрав инструмент на рабочей панели и щелкнув левой кнопкой мыши на любой стороне заготовки.
#### 👫 SPLEN (Rolling 2.5) - Untitled □☞■ ┡ + L ⌀⌀∞ ? ? ► ■ ½ # 38 = ■ ма прокатки →ъ-X1: 0.000000 \$ X2: 15.000000 Y1: 15.000000 \$ Y2: 15.000000 R: Line < > < > N: 10 Подкат Длина ребра[mm]: 1.000000 Построить сетку Удалить сетку свойства Добавить Удалить Изменить пература[С]: 1000.000000 D0[mm-3]: 50.000000 0.000000 10.000000 s. 000000 15 000000

б) Выделить опорную точку и ввести координаты (рис. 25)

Рис. 25. Определение геометрии через ввод координат опорных точек

Примечание: если использовать способ а) для задания размеров заготовки, координаты точек изменяются автоматически и прописываются в соответствующих окнах.

В SPLEN (Rolling 2.5) есть возможность задавать сечения произвольной формы, в том числе и округлой. Для этого необходимо выделить соответствующую сторону и в окно кото выделить соответствующую сторону и в окно кото в окно в окно в окно в окно нужный радиус.

Имеются кнопки масштабирования:

- отдаление.

🗩 - приближение.

🖽 - масштабирование .

Примечание: 🖾 применяется, если при вводе размеров заготовки, она зрительно уходит за рамки окна, тогда после нажатия этой кнопки фигура

отобразится полностью. Все действия с масштабом фигуры модно выполнять через панель инструментов во вкладке инструменты.

Триангуляция (построение сетки).

Примечание: для построения сетки необходимо наличие файла Mesh2d.dll в папке, где хранится и файл приложения SPR.exe.

Чтобы построить сетку разбиения в SPLEN (Rolling 2.5) нужно:

I) Ввести число точек разбиения в окне N: |
II) Ввести длину ребра разбиения в окно Длина ребра[mm]: |
III) Нажать кнопку построить сетку Построить сетку

Для удаления сетки надо нажать кнопку удалить сетку

Примечание: число точек разбиения вводится отдельно для каждой стороны сечения заготовки.

Удалить сетку

Построим к примеру сетку с числом точек разбиения 10 (для каждой стороны) и длиной ребра 3 мм (рис. 26).



Рис. 26. Построение сетки

Примечание: более мелкая сетка гарантирует боле точное решение, но и требует большего времени для расчетов и больших ресурсов компьютера. Более крупная сетка гарантирует боле грубое решение, но и требует меньшего времени для расчетов и меньших ресурсов компьютера. Сетка подбирается индивидуально для каждой задачи, исходя из вашего желания добиться определенной точности расчетов.

Задание термомеханических свойств:

Упомянутая в 1 разделе папка *Properties* необходима для задания термомеханических свойств заготовки, именно в ней прописаны файлы, содержащие свойства различных материалов.

Для задания свойств необходимо нажать на кнопку изменить и из появившегося списка выбрать нужные вам.

Термомеханические свойства

В окне появится название выбранного

файла, содержащего свойства заготовки.

Задание температуры:

Для задания температуры нужно ввести ее числовое значение в поле

Температура[С]:

Определение свойств прокатки:

После задания основных свойств заготовки можно переходить к определению свойств прокатки.

Для этого нажимаем на кнопку Добавить. Перед нами появилось диалоговое окно предлагающее выбрать прокатку или паузу, выбираем прокатку (рис. 27). В поле имя вводим произвольное имя. И нажимаем опять кнопку Добавить.

Примечание: для удаления прокатки или паузы, выбранных ранее, необходимо нажать кнопку Удалить.



Рис.27. Выбор меню прокатки

После этого откроется главное окно прокатки (рис. 28).



рис. 28. Главное окно прокатки

Далее нужно ввести параметры прокатки, параметры валков и параметры теплообмена, они вводятся в соответствующие окна. Численные значения всех величин зависят от вашей конкретной задачи. После задания всех параметров нажимаем на кнопку ► (или в панели меню выбираем *pacчет* – *запустить pacчет*), начнется процесс прокатки – это и есть этап, который условно назван процессор. Рассмотрим его подробно.

Примечание: для преждевременной остановки надо нажать кнопку ( или в панели меню выбираем расчет – остановить расчет) <u>Процессор:</u>

На данном этапе компьютер производит вычисления необходимые для моделирования процесса прокатки. В процессе расчетов (рис. 29) отображается изменение основных значений, таких как: координаты максимального и минимального отклонений по оси х и оси у, площадь сечения, время , скорость и т.д.. По умолчанию активна кнопка . Она означает, что отображается ¹/₄ заготовки.



Рис. 29. Запущенный расчет

Есть еще вариант просмотра заготовки в полном сечении, для этого надо нажать кнопку 📕 (рис. 30).



Рис. 30. Отображение заготовки в полном сечении

Так же можно просмотреть 3D модель очага деформации заготовки, которая строится с помощью наслоения сечений. Для этого надо нажать кнопку **30** (рис. 31).



Рис. 30. Отображение заготовки в 3D

Заметим, что координаты сечений так же прописываются.

После окончания расчетов, кнопка **с**танет не активной, а кнопка **к**овь станет активной для запуска прокатки. Теперь можно переходить к условно названному этапу – постпроцессор.

#### Сохранение результатов:

Сохранение, открытие и создание нового проекта осуществляется 2 способами:

- 1) С помощью вкладки *файл новый, открыть, сохранить* на панели инструментов.
- 2) С помощью соответствующих кнопок.

#### Постпроцессор:

На данном этапе происходит просмотр и обработка самим пользователем результатов прокатки. Все результаты сохраняются в файлах *log0*, *log1*, *log3*.

Примечание: для корректного отображения результатов, необходимо в региональных настройках операционной системы установить знак разделитель - точка.

## <u>Глава 5. Компьютерное моделирование прокатки слябов</u> квадратного и круглого сечения на гладкой бочке.

#### 5.1. Выбор коэффициента трения

Для обеспечения адекватности сравнения расчетов в двух компьютерных системах необходимо убедиться в том, что начальные и граничные условия, а также уравнения состояния задаются в них одинаково. Для этого сделаем тестовые расчеты в Deform и Splen, сравним результаты, выберем подходящий коэффициент. Тестовые расчеты будем считать для обобщенно плоской задачи, для этого коэффициенты k1 и k2 используемые в методе 2.5D приравняем к 0, а в Deform ограничим направление течения металла, чтоб оно происходило в 2 направлениях.

Было сделано 5 тестовых расчетов, с коэффициентами трения: K1= 0.1, K2= 0.2, K3= 0.3, K4=0.4 и K5 = 0.5. В тестовых расчетах деформировался кубик с размером поперечного сечения 50мм х 50мм. Уравнение течения металла:

Значение констант: c = 72, n = 0.174, m = 0.134, y =0.





Рис. 31. Сечения кубика до деформации На рис.32 сечения кубика после деформации для k1 = 0.1.







На рис.33 сечения кубика после деформации для К2 = 0.2.



Splen







На рис.34 сечения кубика после деформации для КЗ = 0.3.







На рис.35 сечения кубика после деформации для К4 = 0.4.



Deform Рис.35





Splen



Deform Рис.36

Интерес представляет координата двух точек:

- точка контакта с валком Xcont
- центральная точка Xcntr



Рис.37. Изображение точек Xcont и Xcntr

Значение координат Xcont и Xcntr для K1 = 0.1 представлены в таблице 1.

Таблица 1.

Deform:				Splen:			
	X cont,мм	Х тах,мм	Time,c		X cont,мм	Х тах,мм	Time,c
	25	25	0		25	25	0
	27.21	27.49	0.005		27.310407	27.573026	0.005
	29.61	30.14	0.01		29.704232	30.187413	0.01
	32.02	32.77	0.015		32.139296	32.823961	0.015
	34.36	35.3	0.02		34.470903	35.339419	0.02
	36.51	37.61	0.025		36.625255	37.658753	0.025
	38.33	39.56	0.03		38.427668	39.598997	0.03
	39.71	41.02	0.035		39.770855	41.046604	0.035
	40.49	41.86	0.04		40.554633	41.892988	0.04
	40.68	42.05	0.0436		40.722772	42.074859	0.0436

Значение координат Xcont и Xcntr для K1 = 0.1.

На рисунке 38 представлено изменение Xcntr в зависимости от Time.



Рис. 38 На рисунке 39 представлено изменение Xcont в зависимости от Time.



Рис. 39

Значение координат Xcont и Xcntr для K2 = 0.2 представлены в таблице 2.

Таблица 2.

Deform:				Splen:			
	X cont,мм	Х тах,мм	Time,c		X cont,мм	Х тах,мм	Time,c
	25	25	0		25	25	0
	27.07	27.62	0.005		27.128621	27.658172	0.005
	29.3	30.32	0.01		29.357428	30.335894	0.01
	31.55	33	0.015		31.633945	33.023676	0.015
	33.75	35.57	0.02		33.811162	35.580516	0.02
	35.77	37.91	0.025		35.817784	37.931829	0.025
	37.49	39.88	0.03		37.491247	39.894634	0.03
	38.78	41.34	0.035		38.733447	41.35666	0.035
	39.52	42.19	0.04		39.455185	42.210441	0.04
	39.69	42.38	0.0436		39.610023	42.393935	0.0436

Значение координат Xcont и Xcntr для K2 = 0.2.

На рисунке 40 представлено изменение Xcntr в зависимости от Time.



Рис. 40

На рисунке 41 представлено изменение Xcont в зависимости от Time.



Рис. 41

Значение координат Xcont и Xcntr для K3 = 0.3 представлены в таблице 3.

Таблица 3.

Deform:				Splen:			
	X cont,мм	Х тах,мм	Time,мм		X cont,мм	Х тах,мм	Time,c
	25	25	0		25	25	0
	26.91	27.7	0.005		26.937591	27.736569	0.005
	28.95	30.46	0.01		28.982521	30.468924	0.01
	31.03	33.18	0.015		31.073092	33.194638	0.015
	33.06	35.78	0.02		33.065856	35.775713	0.02
	34.95	38.13	0.025		34.899011	38.139488	0.025
	36.55	40.1	0.03		36.429292	40.10512	0.03
	37.76	41.57	0.035		37.568062	41.564439	0.035
	38.46	42.42	0.04		38.228699	42.415042	0.04
	38.62	42.6	0.0436		38.370162	42.597881	0.0436

Значение координат X cont и X cntr для K3 = 0.3.

На рисунке 42 представлено изменение Xcntr в зависимости от Time.



Рис.42

На рисунке 43 представлено изменение Xcont в зависимости от Time.



Рис. 43

Значение координат Xcont и Xcntr для K4 = 0.4 представлены в таблице 4.

Таблица 4.

				-	1	1	r
Deform:				Splen:			
	X cont,мм	Х тах,мм	Time,c		X cont,мм	Х тах,мм	Time,c
	25	25	0		25	25	0
	26.73	27.78	0.005		26.73897	27.807723	0.005
	28.58	30.59	0.01		28.576314	30.586078	0.01
	30.48	33.35	0.015		30.445019	33.336927	0.015
	32.34	35.95	0.02		32.229874	35.923941	0.02
	34.07	38.31	0.025		33.893373	38.278228	0.025
	35.56	40.27	0.03		35.264935	40.233223	0.03
	36.67	41.74	0.035		36.276218	41.682831	0.035
	37.3	42.58	0.04		36.860523	42.526047	0.04
	37.43	42.76	0.0436		36.980515	42.707132	0.0436

Значение координат Xcont и Xcntr для K4 = 0.4.

На рисунке 44 представлено изменение Xcntr в зависимости от Time.



Рис. 44





Рис. 45

Значение координат Xcont и Xcntr для K5 = 0.5 представлены в таблице 5.

Таблица 5.

Deform:				Splen:			
	X cont,мм	Х тах,мм	Time,c		X cont,мм	Х тах,мм	Time,c
	25	25	0		25	25	0
	26.51	27.84	0.005		26.534764	27.87135	0.005
	28.16	30.7	0.01		28.133756	30.687593	0.01
	29.87	33.47	0.015		29.698252	33.450809	0.015
	31.55	36.08	0.02		32.024071	36.032381	0.02
	33.12	38.42	0.025		33.407301	38.387388	0.025
	34.47	40.38	0.03		35.905905	40.343907	0.03
	35.39	41.83	0.035		37.153863	41.80356	0.035
	35.91	42.7	0.04		37.675001	42.650829	0.04
	36.02	42.86	0.0436		37.787575	42.832492	0.0436



На рисунке 46 представлено изменение Xcntr в зависимости от Time.

Рис.46

На рисунке 47 представлено изменение Xcntr в зависимости от Time.



Рис. 47

Для моделирования процесса прокатки обычно используются коэффициенты 0.3 или 0.4.Проанализировав все численные значения, было принято решение выбрать K4 = 0.4 в качестве коэффициента трения, который будет использоваться во всех дальнейших расчетах, как в Deform, так и в Splen. Во всех тестовых расчетах было задано одинаковое уравнение течения металла, оно останется таким же во всех дальнейших расчетах.

# 5.2. Расчет прокатки в программном комплексе DEFORM-3D для слябов квадратного сечения

#### 5.2.1 Обжатие сляба на 10 мм

Для расчетов были взяты заготовки одинаковой высоты (H), одинаковой длины (L), но разной ширины (w) (рис.48). Во всех расчетах использовалась четверть заготовки, для экономии времени. В таблице 6 представлены размеры всех заготовок.

Таблица 6.

Порялковый	W MM	Нмм	Тмм
порядковыи	<b>vv</b> , IVIIVI	<b>11</b> , WIWI	
номер заготовки			
1	30	50	200
2	35	50	200
3	40	50	200
4	45	50	200
5	50	50	200
6	55	50	200
7	60	50	200
8	70	50	200

Размеры всех заготовок.



Рис.48. Изображение геометрических размеров

Н1 – высота заготовки после прокатки.

В данном разделе рассматривается обжатие на 10 мм, следовательно:

Радиус валков R = 100 мм. Ширина Q = 100 мм. Скорость движения валков 95 об/мин. Валки использовались цилиндрической формы (рис. 49).



Рис.49. Изображение валка

Для качественной оценки деформации, можно посмотреть сечения сляба после прокатки, они представлены в таблице 7.

Таблица 7.

Сечения сляба после прокатки.







Но нас больше интересует количественная оценка, которая заключается в координате точек Xcont и Xcntr, площади сечения (S/4), численные значения представлены в таблице 8.

Таблица 8.

W,мм	Xcntr,мм	Xcont,мм	S/4,мм^2
30	15.7246	16.9531	327.356
35	18.3269	19.8035	379.362
40	21.024	22.3286	432.058
45	23.5459	25.0235	483.664
50	26.2718	26.9652	529.831
55	28.7375	30.352	585.32
60	31.3335	32.6829	637.185
70	36.5022	37.9255	738.484

Численные значения Xcont и Xcntr, площади сечения (S/4).

#### 5.2.2 Обжатие сляба на 5 мм

В данном разделе рассматриваются заготовки, как и в предыдущем, отличие лишь в том, что обжатие на 5 мм, следовательно:

С точки зрения качественной оценки сечения, получаемые при обжатии на 5 мм, отличаются лишь большим размерами. Интерес представляют координаты точек Xcont и Xcntr, площади сечения (S/4), численные значения представлены в таблице 9.

Таблица 9.

Численные значения Xcont и Xcntr, площади сечения (S/4).

W,мм	Xcntr,мм	Xcont,мм	S/4,мм^2
30	15.1978	16.2471	350.781
35	17.7442	18.7915	407.31
40	20.2999	21.4136	464.414
45	22.8308	24.1333	522
50	25.3872	26.1819	574.511
55	27.8999	29.0698	633.562
60	30.4158	31.6096	689.456
70	35.439	36.681	800.842

### 5.3. Расчет прокатки в программе Splen-R для слябов квадратного сечения

#### 5.3.1 Обжатие сляба на 10 мм

Для расчетов в программе Splen задавались такие же размеры заготовок, трение, формула течения металла, как и в Deform. Отличие заключается в том, что в Splen, на характер геометрии влияет эмпирический поправочный коэффициент k1, расчеты были проведены для ряда коэффициентов, чтобы определить наилучший. Численные результаты представлены в таблицах:

- Таблицы 10,10.1 координаты Xcntr, для каждого k1
- Таблицы 11,11.1 координаты Xcont, для каждого k1
- Таблицы 12,12.1 значения площадей сечений (S/4), для каждого k1

Таблица 10.

Координаты Xcntr.

X_Cntr								
w\k1	0	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	17.13466	16.58567	16.35552	16.19657	16.13195	16.07535	16.0222	15.97064
35	19.98459	19.33739	19.06804	18.88414	18.80777	18.73747	18.68592	18.6288
40	22.7664	22.05074	21.75135	21.54153	21.45095	21.38446	21.3073	21.24859
45	25.53155	24.73143	24.40219	24.17097	24.07466	23.99224	23.91443	23.84161
50	28.28206	27.39234	27.02814	26.77049	26.66743	26.57306	26.4845	26.40156
55	30.98997	30.0424	29.63491	29.35503	29.24024	29.13461	29.042	28.95903
60	33.75891	32.66845	32.22989	31.91625	31.78778	31.68198	31.58046	31.48629
70	39.2024	37.87249	37.35339	36.99372	36.85824	36.71918	36.61039	36.50499

Таблица 10.1.

Координаты Xcntr.

X_Cntr							
w\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	15.92684	15.88167	15.84123	15.80085	15.7288	15.66404	15.60701
35	18.57265	18.5231	18.46993	18.42779	18.34045	18.27166	18.20054
40	21.18779	21.12255	21.06445	21.02648	20.9333	20.84946	20.76782
45	23.77581	23.70514	23.64413	23.59347	23.49215	23.40325	23.32424
50	26.33112	26.26	26.19849	26.12348	26.02673	25.92445	25.83651
55	28.87949	28.80155	28.73077	28.66709	28.55013	28.44023	28.34
60	31.40312	31.32539	31.24997	31.17068	31.05555	30.93681	30.8414
70	36.4067	36.31858	36.23648	36.1602	36.02341	35.90041	35.79168

Таблица 11.

Координаты Xcont.

X_Cont								
w\k1	0	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	16.04164	16.34833	16.58678	16.78593	16.87496	16.95907	17.03768	17.11291
35	18.70084	18.98386	19.20733	19.39576	19.4798	19.55995	19.63403	19.70074
40	21.39135	21.62681	21.82723	22.00072	22.07802	22.14948	22.21028	22.28231
45	24.05962	24.24429	24.42298	24.57724	24.64683	24.71283	24.77567	24.83404
50	26.75016	26.8768	27.02458	27.15864	27.22022	27.28027	27.33974	27.39021
55	29.42616	29.47827	29.59844	29.71024	29.76519	29.81574	29.86593	29.9105
60	32.11601	32.09036	32.1798	32.27355	32.31888	32.36434	32.40445	32.45175
70	37.45293	37.24585	37.27019	37.32741	37.3577	37.39018	37.41991	37.45422

#### Таблица 11.1.

Координаты Xcont.

X_Cont							
w\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	17.18399	17.25172	17.31654	17.37778	17.49328	17.60097	17.70079
35	19.77049	19.83361	19.89399	19.95311	20.06174	20.1628	20.25584
40	22.34397	22.40319	22.46004	22.51257	22.61339	22.70836	22.79689
45	24.89097	24.94567	24.99935	25.04709	25.13836	25.22697	25.30888
50	27.43978	27.49091	27.53726	27.58353	27.67028	27.74945	27.82142
55	29.95878	30.00481	30.04912	30.08538	30.16464	30.23735	30.31004
60	32.49239	32.52932	32.56892	32.60794	32.67766	32.7465	32.8105
70	37.48583	37.51619	37.54748	37.5796	37.64101	37.70561	37.75955

### Таблица 12.

Значения площадей сечений (S/4).

S/4								
w\k1	0	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	336.9513	333.7166	332.725	332.1019	331.8506	331.6412	331.4498	331.2851
35	392.3047	387.8025	386.2524	385.2232	384.8074	384.4581	384.1344	383.8189
40	447.1932	441.4976	439.3161	437.8601	437.2555	436.722	436.2558	435.7952
45	502.0386	494.8285	491.9794	490.0404	489.2434	488.554	487.9272	487.3379
50	556.5955	547.8055	544.2618	541.8339	540.8553	540.0077	539.2378	538.5015
55	611.0917	600.401	596.159	593.2457	592.1082	591.0446	590.1451	589.2593
60	665.2332	652.6824	647.7006	644.3284	642.9728	641.7967	640.7703	639.7858
70	773.1891	756.3601	749.9314	745.7267	744.0438	742.5607	741.2151	740.0445

Таблица 12.1. Значения площадей сечений (S/4).

S/4							
W\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	331.1248	330.9733	330.834	330.7141	330.4667	330.2636	330.0767
35	383.5425	383.2756	383.0259	382.8135	382.387	382.0261	381.7054
40	435.3916	435.0138	434.6708	434.3391	433.737	433.2276	432.7443
45	486.8216	486.3259	485.886	485.4566	484.6505	483.9886	483.3779
50	537.8203	537.2477	536.6839	536.1475	535.2343	534.3952	533.6052
55	588.5318	587.8486	587.1879	586.5316	585.4413	584.4635	583.6172
60	638.9074	638.0628	637.3283	636.6333	635.4009	634.312	633.3431
70	738.9615	737.9741	737.0712	736.2673	734.7884	733.5699	732.4323

Заметим, что с увеличением коэффициента k1, площадь сечения S/4 уменьшается, наглядно это можно увидеть на следующих рисунках:



Рис.50.Зависимость площади сечения S/4 от k1 для W = 30мм.



Рис.51.Зависимость площади сечения S/4 от k1 для W = 35 мм.







Рис.53.Зависимость площади сечения S/4 от k1 для W = 45 мм.



Рис.54.Зависимость площади сечения S/4 от k1 для W = 50 мм.







Рис.56.Зависимость площади сечения S/4 от k1 для W = 60 мм.



Рис.57.Зависимость площади сечения S/4 от k1 для W = 70 мм.

#### 5.3.2 Обжатие сляба на 5 мм

Для расчетов в программе Splen задавались такие же размеры заготовок, трение, формула течения металла, как и в Deform. Отличие заключается в том, что в Splen, на характер геометрии влияет эмпирический поправочный коэффициент k1, расчеты были проведены для ряда коэффициентов, чтобы определить наилучший. Численные результаты представлены в таблицах:

- Таблицы 13,13.1 координаты Xcntr, для каждого k1
- Таблицы 14,14.1 координаты Xcont, для каждого k1
- Таблицы 15,15.1 значения площадей сечений (S/4), для каждого k1

Таблица 13. Координаты Xcntr.

X_Cntr								
w\k1	0	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	15.90735	15.56856	15.44271	15.32759	15.2868	15.25125	15.2243	15.19439
35	18.60995	18.19418	18.0325	17.90056	17.85043	17.81783	17.77461	17.74354
40	21.30289	20.78476	20.58439	20.45443	20.41136	20.36901	20.31572	20.27929
45	23.93224	23.35366	23.15078	22.99738	22.94867	22.89766	22.86256	22.80781
50	26.54833	25.91056	25.74216	25.53555	25.46449	25.40824	25.35874	25.31595
55	29.21466	28.5119	28.22407	28.05733	27.98443	27.92111	27.86697	27.82671
60	31.83592	31.03106	30.75324	30.56199	30.49845	30.42922	30.37563	30.33143
70	37.00744	36.1076	35.75129	35.54959	35.46231	35.4029	35.34698	35.29173

Таблица 13.1.

Координаты Xcntr.

X_Cntr							
w\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	15.169464	15.14563	15.12518	15.10632	15.0752	15.04615	15.01943
35	17.722816	17.69033	17.65381	17.63759	17.60116	17.56389	17.54096
40	20.248497	20.21317	20.19124	20.1649	20.11936	20.07768	20.04434
45	22.76767	22.70833	22.70833	22.6814	22.62588	22.58459	22.54901
50	25.281307	25.24354	25.20717	25.17826	25.12088	25.07565	25.04135
55	27.785275	27.74349	27.71091	27.67845	27.61968	27.57008	27.53328
60	30.277448	30.23765	30.20056	30.16791	30.11016	30.06186	30.0158
70	35.25148	35.20842	35.17389	35.13713	35.07769	35.02702	34.97884

#### Таблица 14. Координаты Xcont.

X_Cont								
w\k1	0	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	15.42499	15.65699	15.83642	15.99772	16.06568	16.1317	16.18688	16.2503
35	17.97563	18.20489	18.37374	18.52856	18.59437	18.65769	18.71649	18.76757
40	20.52986	20.74487	20.91269	21.05588	21.11567	21.17497	21.23007	21.27976
45	23.09987	23.27826	23.43579	23.56753	23.62524	23.67552	23.72698	23.77853
50	25.67835	25.80937	25.96939	26.08213	26.13563	26.18696	26.23629	26.28063
55	28.24156	28.33233	28.46331	28.57608	28.62431	28.67842	28.7215	28.76176
60	30.82517	30.85514	30.9815	31.09169	31.13388	31.18053	31.22914	31.26647
70	35.99657	35.89865	35.98559	36.07923	36.12972	36.16537	36.2022	36.2432

#### Таблица 14.1.

Координаты Xcont.

X_Cont							
w\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	16.301757	16.35463	16.40483	16.45038	16.53492	16.6104	16.68602
35	18.817432	18.87399	18.9186	18.96388	19.04555	19.11907	19.18882
40	21.332309	21.37473	21.41994	21.46347	21.54007	21.61157	21.67522
45	23.822495	23.90839	23.90839	23.95086	24.02221	24.09268	24.15462
50	26.321189	26.36483	26.40224	26.44048	26.51326	26.57935	26.64229
55	28.801384	28.84441	28.88666	28.9218	28.99221	29.05454	29.11351
60	31.307913	31.3458	31.38055	31.41947	31.48187	31.54422	31.60271
70	36.277235	36.31291	36.34232	36.37451	36.43682	36.49261	36.54785

#### Таблица 15.

Значения площадей сечений (S/4).

S/4								
w\k1	0	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	356.6166	354.5397	353.9985	353.7679	353.667	353.5835	353.5333	353.4777
35	415.5999	412.6343	411.754	411.2184	411.0143	410.8428	410.7164	410.6038
40	474.4981	470.4376	469.1583	468.3506	468.0552	467.7908	467.5582	467.3167
45	533.1417	528.0649	526.3768	525.225	524.8452	524.4513	524.1393	523.8441
50	591.8332	585.4841	583.9032	581.9753	581.4134	580.94	580.5546	580.1829
55	650.5297	642.6914	640.0836	638.4709	637.7864	637.273	636.7869	636.3576
60	709.0897	699.6962	696.7092	694.8254	694.0738	693.4434	692.978	692.4557
70	825.9607	813.3391	809.5274	807.1827	806.3607	805.6007	804.9546	804.4204

Таблица 15.1. Значения площадей сечений (S/4).

S/4							
w\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	353.4457	353.4291	353.4035	353.3715	353.3117	353.2597	353.2553
35	410.4625	410.4055	410.2882	410.2032	410.063	409.95	409.7753
40	467.1752	466.9728	466.8187	466.6734	466.4177	466.178	465.9657
45	523.592	523.3697	523.135	522.9501	522.5904	522.298	522.0331
50	579.8493	579.5669	579.2971	579.067	578.6346	578.2782	577.9532
55	635.9885	635.6598	635.3793	635.0898	634.6119	634.1904	633.8194
60	692.0446	691.6503	691.3046	691.0289	690.4558	690.0146	689.6252
70	803.9333	803.5018	803.0736	802.7285	802.114	801.5905	801.1622

Заметим, что с увеличением коэффициента k1, площадь сечения S уменьшается, наглядно это можно увидеть на следующих графиках:



Рис.58.Зависимость площади сечения S/4 от k1 для W = 30 мм.



Рис.59.Зависимость площади сечения S/4 от k1 для W = 35 мм.



Рис.60.Зависимость площади сечения S/4 от k1 для W = 40мм.



Рис.61.Зависимость площади сечения S/4 от k1 для W = 45 мм.



Рис.62.Зависимость площади сечения S/4 от k1 для W = 50 мм.







Рис.64.Зависимость площади сечения S/4 от k1 для W = 60 мм.



Рис.65.Зависимость площади сечения S/4 от k1 для W = 70 мм.

Площадь сечения уменьшается с увеличением k1, это связано с тем, что при увеличении коэффициента k1 увеличивается вытяжка заготовки.

## 5.4. Расчет прокатки в программном комплексе DEFORM-3D для слябов круглого сечения

#### 5.4.1 Обжатие сляба на 10 мм

Для расчета были взяты заготовки различных диаметров D1 = 30 мм, D2 = 35 мм, D3 = 40 мм, D4 = 45 мм, D5 = 50 мм, D6 = 55 мм. Длина одинаковая L = 200 мм (рис 66).



Рис. 66. Изображение геометрических размеров заготовки

Радиус валков R = 100 мм. Ширина Q = 100 мм. Валки использовались цилиндрической формы (рис. 67).



Рис. 67. Изображение геометрических размеров валка

Для качественной оценки деформации, можно посмотреть сечение сляба после прокатки, для каждого диаметра, они представлены в таблице 16.







Но нас больше интересует количественная оценка, которая заключается в координате точек Xcont и Xcntr, площади сечения (S/4), численные значения представлены в таблице 17.

Таблица 17.

Численные значения Xcont и Xcntr, площади сечения (S/4).

D, мм	Xcntr,мм	Xcont,мм	S/4, мм^2
30	16.315	10.4668	147.659
35	18.4513	11.7312	207
40	20.7712	12.7182	275.95
45	23.1746	13.61	354.735
50	25.4504	14.88	442.19
55	27.8378	15.9023	545.707

#### 5.4.2 Обжатие сляба на 5 мм

В данном разделе рассматриваются заготовки, как и в предыдущем, отличие лишь в том, что обжатие на 5 мм, следовательно:

С точки зрения качественной оценки сечения, получаемые при обжатии на 5 мм, отличаются лишь большим размерами. Интерес представляют координаты точек Xcont и Xcntr, площади сечения (S/4), численные значения представлены в таблице 18.
#### Таблица 18.

D,мм	Xcntr,мм	Xcont,мм	S/4, мм^2
30	15.4135	7.60024	147.659
40	20.5502	8.915	275.95
45	22.7048	9.31714	354.735
50	25.1281	10.5243	442.19
55	27.5952	11.5571	545.707

Численные значения Xcont и Xcntr, площади сечения (S/4).

# 5.5. Расчет прокатки в программе Splen-R для слябов круглого сечения 5.5.1 Обжатие сляба на 10 мм

Для расчетов в программе Splen задавались такие же размеры заготовок, трение, формула течения металла, как и в Deform. Отличие заключается в том, что в Splen, на характер геометрии влияет эмпирический поправочный коэффициент k1, расчеты были проведены для ряда коэффициентов, чтобы определить наилучший. Численные результаты представлены в таблицах:

- Таблицы 19,19.1 координаты Xcntr, для каждого k1
- Таблицы 20,20.1 координаты Xcont, для каждого k1
- Таблицы 21,21.1 значения площадей сечений (S/4), для каждого k1

Таблица 19.

Координаты Xcntr.

X_Cntr							
D\k1	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	17.67514	17.48723	17.35302	17.29064	17.23162	17.17289	17.12085
35	19.79859	19.60556	19.44107	19.37646	19.3109	19.24585	19.1905
40	22.03604	21.80627	21.63191	21.55988	21.48595	21.42256	21.36293
45	24.28507	24.05491	23.86081	23.79339	23.71667	23.65142	23.59288
50	26.59539	26.33313	26.1345	26.05543	25.98119	25.92496	25.8524
55	28.91789	28.64064	28.44633	28.34807	28.28976	28.2369	28.19509

### Таблица 19.1.

# Координаты Xcntr.

X_Cntr							
D\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	17.0743	17.02547	16.98163	16.94015	16.8637	16.78988	16.72157
35	19.13914	19.08933	19.04359	19.00024	18.91711	18.84421	18.77569
40	21.30771	21.26022	21.20925	21.16424	21.08441	21.00857	20.93982
45	23.53723	23.48351	23.43396	23.39231	23.31074	23.2356	23.17257
50	25.8018	25.7414	25.71334	25.67632	25.58383	25.5173	25.46895
55	28.1173	28.0676	28.04174	27.99166	27.93574	27.86075	27.78852

## Таблица 20.

# Координаты Xcont.

X_Cont								
D\k1	0	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	10.99869	10.94939	10.94819	10.96674	10.97334	10.98157	10.98891	10.9988
35	11.3438	11.33223	11.36773	11.39529	11.41697	11.43475	11.44977	11.4648
40	11.25991	11.71713	11.76083	11.81256	11.83773	12.27842	12.30022	12.32212
45	12.07548	12.10503	12.17359	12.23375	12.74248	12.76801	12.79707	12.82632
50		12.33928	12.94403	13.0127	13.57519	13.6101	13.64871	13.6912
55		12.94769	13.61801	13.70759	13.73561	13.77793	14.39539	14.43196

### Таблица 20.1.

Координаты Xcont.

X_Cont							
w (D)\k	0.55	0.6	0.65	0.7	0.8	0.9	1
30	11.01077	11.02018	11.0307	11.04229	11.0658	11.08812	11.10876
35	11.48456	11.50069	11.51845	11.53549	11.56917	11.60257	11.6351
40	12.34601	12.37077	12.39092	12.41139	12.45649	12.49548	12.53457
45	12.85028	12.87839	12.90981	12.9358	12.98699	13.49514	13.54295
50	13.7083	13.72839	13.76688	13.79287	13.84664	13.90342	13.95459
55	14.4669	14.49734	14.53694	14.56606	14.62379	14.6802	15.29584

#### Таблица 21.

### Значения площадей сечений (S/4).

S/4							
D\k1	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	159.9978	158.5364	157.56	157.095	156.6545	156.1927	155.8097
35	220.7069	219.0275	217.5866	217.0356	216.4847	215.9172	215.4419
40	291.2922	288.9633	287.2388	286.6577	285.9136	285.3258	284.7892
45	371.1711	368.6132	366.6274	365.9813	365.0837	364.6121	363.9379

50	461.3916	458.1356	456.0717	455.204	454.1953	453.7524	453.145
55	561.1587	557.6615	555.2918	554.103	553.4831	552.8011	552.0102

Таблица 21.1.

Значения площадей сечений (S/4).

S/4							
D\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	155.4809	155.1182	154.8004	154.503	153.9665	153.4461	152.9619
35	215.0079	214.6032	214.2142	213.8586	213.184	212.5857	212.0231
40	284.3179	283.8208	283.3391	282.951	282.2035	281.5261	280.9337
45	363.3883	362.8319	362.394	362.0697	361.2338	360.4902	359.8422
50	452.3052	451.627	451.3767	450.8968	449.9456	449.3416	448.7271
55	551.2863	550.975	550.5433	549.8857	549.0791	548.2399	547.7446

Заметим, что с увеличением коэффициента k1, площадь сечения S/4 уменьшается, наглядно это можно увидеть на следующих рисунках:











Рис.70.Зависимость площади сечения S/4 от k1 для D = 40мм.



Рис.71.Зависимость площади сечения S/4 от k1 для D = 45мм.



Рис.72.Зависимость площади сечения S/4 от k1 для D = 45мм.



Рис.73.Зависимость площади сечения S/4 от k1 для D = 55 мм.

#### 5.5.2 Обжатие сляба на 5 мм

Для расчетов в программе Splen задавались такие же размеры заготовок, трение, формула течения металла, как и в Deform. Отличие заключается в том, что в Splen, на характер геометрии влияет эмпирический поправочный коэффициент k1, расчеты были проведены для ряда коэффициентов, чтобы определить наилучший. Также из-за технических особенностей пришлось отказаться от D2 = 35 мм. Численные результаты представлены в таблицах:

- Таблицы 22,22.1 координаты Xcntr, для каждого k1
- Таблицы 23,23.1 координаты Xcont, для каждого k1
- Таблицы 24,24.1 значения площадей сечений (S/4), для каждого k1

Таблица 22.

X_Cntr						
D\k1	0.2	0.3	0.35	0.4	0.45	0.5
30	15.74109	15.66354	15.62804	15.60456	15.57043	15.54189
40	20.47623	20.3939	20.3621	20.33864	20.30338	20.27965
45	22.88395	22.78574	22.75085	22.73008	22.70112	22.67949
50	25.28931	25.19642	25.1683	25.15163	25.12717	25.10518
55	27.71485	27.63679	27.6077	27.58446	27.56273	27.54819

#### Координаты Xcntr.

# Таблица 22.1.

#### Координаты Xcntr.

X_Cntr							
D\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	15.521008	15.49833	15.47296	15.45343	15.41694	15.3857	15.35774
40	20.256207	20.23672	20.21205	20.19683	20.17365	20.14196	20.12033
45	22.653702	22.64395	22.62825	22.6123	22.57845	22.55874	22.53694
50	25.085539	25.07466	25.05791	25.04766	25.02374	25.00463	24.98783
55	27.530481	27.51943	27.51157	27.50078	27.47872	27.4634	27.44822

#### Таблица 23.

# Координаты Xcont.

X_Cont						
D\k1	0.2	0.3	0.35	0.4	0.45	0.5
30	7.088465	7.120863	7.134412	7.149572	7.163106	7.177258
40	8.093889	8.133838	8.593387	8.609794	8.628166	8.646545
45	8.594094	9.13153	9.158355	9.178063	9.196053	9.216496
50	8.995601	9.591327	9.613594	9.637384	9.656463	10.22008
55	9.874511	9.926626	9.953757	9.978848	10.59196	10.61046

#### Таблица 23.1.

# Координаты Xcont.

X_Cont							
D\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	7.189475	7.203307	7.217296	7.710717	7.735361	7.759394	7.781188
40	8.665192	8.682219	8.695575	8.712873	9.172217	9.204211	9.229223
45	9.231254	9.254598	9.270669	9.765283	9.800168	9.831419	9.863298
50	10.243464	10.26137	10.27868	10.30178	10.33744	10.37358	10.40943
55	10.632485	10.65409	10.67585	10.69656	11.32318	11.36305	11.40316

#### Таблица 24.

# Значения площадей сечений (S/4).

S/4						
D\k1	0.2	0.3	0.35	0.4	0.45	0.5
30	168.9829	168.4935	168.2683	168.1188	167.9327	167.7427
40	303.1339	302.4566	302.2749	302.025	301.8759	301.7311
45	385.0162	384.2929	384.0628	383.9124	383.689	383.5167
50	476.8413	476.0185	475.8221	475.681	475.4463	475.3171
55	578.5511	577.7878	577.5536	577.3144	577.1517	577.0231

#### Таблица 24.1.

S/4							
D\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	167.5923	167.4428	167.3624	167.2356	167.0398	166.8473	166.6752
40	301.5385	301.4003	301.145	301.1011	300.923	300.7188	300.5095
45	383.2878	383.2908	383.2058	383.0241	382.7629	382.6515	382.4751
50	475.1475	475.0363	474.9359	474.9028	474.7227	474.5968	474.5216
55	576.8682	576.9087	576.9021	576.7855	576.6084	576.5353	576.4791





Рис.74.Зависимость площади сечения S/4 от k1 для D = 30мм.



Рис.75.Зависимость площади сечения S/4 от k1 для D = 40мм.



Рис.76.3ависимость площади сечения S/4 от k1 для D = 45мм.



Рис.77.Зависимость площади сечения S/4 от k1 для D = 50мм.



Рис.78.Зависимость площади сечения S/4 от k1 для D = 55мм.

Площадь сечения уменьшается, как для обжатия на 10 мм, так и для обжатия на 5 мм, это объясняется тем, что с увеличением коэффициента k1 увеличивается вытяжка заготовки, что и приводит к уменьшению площади сечения.

# <u>Глава 6. Анализ и сравнение результатов прокатки в DEFORM-3D и</u> <u>Splen-R</u>

### 6.1. Обжатие слябов квадратного сечения на 10 мм

В предыдущих главах мы получили координаты Xcont, Xcntr, а также площадь сечения S/4 для прокатанных заготовок. Посчитаем количественную ошибку результатов полученных в Deform и Splen. Для оценки ошибки по координатам воспользуемся формулой:

 $Err = (Xcont_(Deform) - Xcont_(Splen))^2 + (Xcntr_(Deform) - Xcntr_(Splen))^2$  (61)

Величина Err показывает ошибку, выраженную в мм^2.

Значения Err представлены в таблицах 25,25.1.

Таблица 25.

Значения Err.

Err								
w\k1	0	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	2.81902	1.107193	0.532256	0.2507	0.172041	0.123061	0.09572	0.086074
35	3.96379	1.692909	0.904699	0.476773	0.336021	0.227888	0.157618	0.101706
40	3.914406	1.546696	0.780415	0.375345	0.24508	0.162019	0.094255	0.052581
45	4.871867	2.012661	1.093861	0.58986	0.421462	0.295737	0.197236	0.12334
50	4.0874	1.263417	0.575582	0.286111	0.221555	0.190028	0.18552	0.197471
55	5.93081	2.466167	1.373193	0.793195	0.597096	0.445268	0.328987	0.243996
60	6.203973	2.133185	1.05662	0.507168	0.338885	0.222917	0.138525	0.076776
70	7.51442	2.339622	1.153957	0.599305	0.449156	0.333652	0.267323	0.22211

Таблица 25.1.

Значения Err.

Err							
w\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	0.094209	0.113842	0.145689	0.186169	0.29181	0.423409	0.57286
35	0.061484	0.039402	0.028647	0.032563	0.066869	0.132145	0.220577
40	0.027065	0.015276	0.018914	0.033852	0.089333	0.174682	0.284925
45	0.070422	0.031416	0.010233	0.002819	0.016082	0.061748	0.130573
50	0.228741	0.276507	0.332627	0.404326	0.557198	0.735704	0.922593
55	0.174783	0.124643	0.09178	0.076044	0.070211	0.101517	0.159768
60	0.041141	0.023652	0.01997	0.032129	0.077285	0.161409	0.258443
70	0.202434	0.201252	0.213503	0.236609	0.310174	0.410505	0.532384

Также посчитаем ошибку Err1, которая будет выражена в процентах. Формула для нее:

$$Err1 = Err*100/w$$
 (62)

w – значение ширины заготовки для отдельного случая

Значения Err1 представлены в таблицах 26,26.1.

Таблица 26. Значения Err1.

Err1								
w\k1	0	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	9.396734	3.690643	1.774188	0.835668	0.573472	0.410204	0.319065	0.286913
35	11.32511	4.836884	2.584855	1.362209	0.960061	0.651107	0.450336	0.290588
40	9.786016	3.86674	1.951038	0.938362	0.612699	0.405047	0.235637	0.131453
45	10.82637	4.472581	2.430802	1.3108	0.936583	0.657193	0.438303	0.274088
50	8.1748	2.526834	1.151164	0.572221	0.44311	0.380056	0.37104	0.394942
55	10.78329	4.483941	2.496714	1.442173	1.085629	0.809579	0.598159	0.44363
60	10.33996	3.555309	1.761034	0.84528	0.564809	0.371528	0.230875	0.12796
70	10.73489	3.342316	1.64851	0.856151	0.641652	0.476645	0.381891	0.3173

Таблица 26.1.

Err1							
w\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	0.314031	0.379475	0.485629	0.620563	0.9727	1.411362	1.909532
35	0.17567	0.112578	0.081848	0.093036	0.191054	0.377557	0.630221
40	0.067661	0.038189	0.047285	0.084631	0.223332	0.436705	0.712313
45	0.156493	0.069814	0.022741	0.006264	0.035738	0.137218	0.290162
50	0.457483	0.553014	0.665253	0.808652	1.114397	1.471407	1.845185
55	0.317787	0.226623	0.166873	0.138262	0.127656	0.184576	0.290488
60	0.068568	0.03942	0.033284	0.053549	0.128809	0.269014	0.430738
70	0.289191	0.287503	0.305004	0.338013	0.443105	0.586436	0.760548

Желтым цветом отмечены наименьшие значения ошибки для каждой ширины (w).

Из значений Err и Err1 видно, что наилучшие результаты достигаются в диапазоне значений k1 = [0.4;0.8]. Под словами наилучшие подразумевается, что при данном коэффициенте k1 ошибка вычислений минимальна.

Для более наглядного представления об изменении ошибки, построим графики зависимости Err от k1, они представлены на рисунках ниже:



Рис. 79. Зависимость изменения ошибки от коэффициента k1 для w = 30 мм.



Рис. 80. Зависимость изменения ошибки от коэффициента k1 для w = 35 мм.



Рис. 81. Зависимость изменения ошибки от коэффициента k1 для w = 40 мм.



Рис. 82. Зависимость изменения ошибки от коэффициента k1 для w = 45 мм.



Рис. 83. Зависимость изменения ошибки от коэффициента k1 для w = 50 мм.



Рис. 84. Зависимость изменения ошибки от коэффициента k1 для w = 55 мм.



Рис. 85. Зависимость изменения ошибки от коэффициента k1 для w = 60 мм.





Также интересно наглядно увидеть как значения координат Xcont, Xcntr, полученных в Splen приближаются к соответствующим координатам из Deform, в зависимости от значения коэффициента k1.

Наглядно это видно на рисунках ниже:



Рис. 87. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для w = 30 мм.



Рис. 88. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для w = 35 мм.



Рис. 89. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для w = 40 мм.



Рис. 90. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для w = 45 мм.



Рис. 91. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для w = 50 мм.



Рис. 92. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для w = 55 мм.



Рис. 93. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для w = 60 мм.



Рис. 94. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для w = 70 мм.

Из этих графиков наглядно видно, при каких значениях коэффициента k1 результаты совпадения наилучшие.

Также имеются расчетные данные площадей сечений S. Посмотрим, насколько отличаются результаты из Deform и Splen. Для этого воспользуемся формулой:

$$Err_S = S(Splen) - S(Deform)$$
(63)

Числовые значения Err_S представлены в таблице 27,27.1.

Таблица 27.

Значения Err_S.

Err_S								
w/k1	0	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	9.595336	6.360643	5.368981	4.745881	4.494594	4.285178	4.093766	3.929114
35	12.94271	8.4405	6.890405	5.86118	5.445414	5.096134	4.772352	4.456941
40	15.13519	9.439613	7.258074	5.802138	5.197479	4.664046	4.197838	3.737165
45	18.37457	11.16449	8.315354	6.376381	5.579414	4.889958	4.2632	3.673909
50	26.76447	17.97446	14.43082	12.00288	11.02429	10.17675	9.406812	8.670486
55	25.77168	15.08096	10.83898	7.92571	6.788207	5.724611	4.825149	3.939281
60	28.04818	15.49736	10.51563	7.143379	5.78778	4.611702	3.585308	2.60078
70	34.70508	17.87609	11.44738	7.242665	5.559824	4.076706	2.731052	1.560468

#### Таблица 27.1.

Значения Err_S.

Err_S							
w/k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	3.7688	3.617267	3.478049	3.358051	3.110743	2.907641	2.720736
35	4.180488	3.913645	3.663939	3.451485	3.024955	2.66406	2.343418
40	3.33358	2.95583	2.612805	2.281104	1.678994	1.169563	0.686264
45	3.157605	2.661877	2.221993	1.792579	0.986496	0.324604	-0.28607
50	7.989321	7.416668	6.852874	6.316503	5.403322	4.564173	3.774247
55	3.211815	2.528581	1.867856	1.211646	0.121325	-0.8565	-1.70276
60	1.722425	0.877845	0.143265	-0.55166	-1.78407	-2.87301	-3.84189
70	0.477509	-0.5099	-1.41276	-2.2167	-3.69564	-4.91411	-6.05166

Наглядное представление об Err_S в зависимости от k1 увидим с помощью нижеприведенных рисунков:



Рис. 95. Зависимость изменения координат значения Err_S от коэффициента k1 для w = 30 мм.



Рис. 96. Зависимость изменения координат значения Err_S от коэффициента k1 для w = 35 мм.



Рис. 97. Зависимость изменения координат значения Err_S от коэффициента k1 для w = 40 мм.



Рис. 98. Зависимость изменения координат значения Err_S от коэффициента k1 для w = 45 мм.



Рис. 99. Зависимость изменения координат значения Err_S от коэффициента k1 для w = 50 мм.



Рис. 100. Зависимость изменения координат значения Err_S от коэффициента k1 для w = 55 мм.



Рис. 101. Зависимость изменения координат значения Err_S от коэффициента k1 для w = 60 мм.





Из рисунков видно, что с увеличением коэффициента k1 площади сечений из Deform и Splen становятся ближе друг к другу.Н ачиная со значения k1 = 0.4, значение ошибок ошибок мало и очень близко. Также видно, что с увеличением толщины совпадение площадей наступает быстрей. В некоторых случаях площади и вовсе совпадают.

#### 6.2. Обжатие слябов квадратного сечения на 5 мм

Воспользуемся формулой (61)из предыдущего пункта для расчета Err. Величина Err показывает ошибку выраженную в мм^2.

Значения Err представлены в таблицах 28,28.1.

Таблица 28.

Значения Err.

Err								
w\k1	0	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	1.179332	0.485688	0.22864	0.079036	0.040833	0.016174	0.004329	2.19E-05
35	1.415162	0.5466	0.257637	0.093586	0.050145	0.023325	0.006552	0.000573
40	1.786977	0.682297	0.331851	0.151841	0.101185	0.06172	0.033933	0.018338
45	2.281149	1.004481	0.5889	0.347846	0.272016	0.214029	0.166101	0.126388
50	1.601783	0.412688	0.171159	0.031962	0.008114	0.000468	0.003768	0.014825
55	2.414576	0.918416	0.472919	0.26854	0.205608	0.15363	0.1224	0.100242
60	2.632067	0.947755	0.508373	0.289604	0.233139	0.184285	0.146366	0.124855
70	2.928452	1.059101	0.581118	0.374353	0.304456	0.267176	0.237718	0.213359

Таблица 28.1.

Значения Err.

Err							
w\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	0.0037903	0.014285	0.030152	0.049691	0.097873	0.154985	0.224469
35	0.0011297	0.009707	0.024325	0.041081	0.085004	0.139817	0.199167
40	0.0092505	0.009034	0.011848	0.020712	0.04859	0.088576	0.133758
45	0.1005851	0.065582	0.065582	0.055604	0.054334	0.06227	0.079859
50	0.0306148	0.054099	0.080959	0.110518	0.180726	0.255036	0.331572
55	0.085186	0.075263	0.069258	0.070942	0.084546	0.109011	0.13632
60	0.1101563	0.101329	0.098792	0.097601	0.10973	0.129548	0.160051
70	0.1981899	0.188661	0.18499	0.185065	0.190166	0.205219	0.22948

Также посчитаем ошибку Err1, которая будет выражена в процентах. Воспользуемся для этого формулой (62). Значения Err1 представлены в таблицах 29,29.1.

Таблица 29. Значения Err1

	Shatema Lin.								
Err1									
w\k1	0	0.1	0.2	0.3	0.35	0.4	0.45	0.5	
30	3.931107	1.618959	0.762134	0.263452	0.136111	0.053913	0.01443	7.3E-05	
35	4.043319	1.561714	0.736107	0.267389	0.143272	0.066643	0.01872	0.001638	
40	4.467443	1.705743	0.829627	0.379602	0.252962	0.1543	0.084833	0.045844	
45	5.069221	2.232181	1.308666	0.772992	0.604481	0.47562	0.369114	0.280862	
50	3.203567	0.825377	0.342318	0.063924	0.016229	0.000936	0.007536	0.02965	
55	4.390139	1.669847	0.859854	0.488255	0.373832	0.279328	0.222545	0.182259	
60	4.386778	1.579591	0.847289	0.482674	0.388565	0.307141	0.243944	0.208092	
70	4.183502	1.513002	0.830168	0.53479	0.434938	0.381681	0.339597	0.304799	

#### Таблица 29.1.

Значения Err1.

Err 1							
w\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	0.0126344	0.047616	0.100508	0.165637	0.326242	0.516617	0.748231
35	0.0032278	0.027734	0.069499	0.117375	0.242869	0.399477	0.569048
40	0.0231262	0.022584	0.02962	0.05178	0.121474	0.22144	0.334395
45	0.2235225	0.145737	0.145737	0.123563	0.120743	0.138377	0.177465
50	0.0612295	0.108198	0.161917	0.221036	0.361452	0.510072	0.663144
55	0.1548837	0.136842	0.125923	0.128986	0.15372	0.198203	0.247855
60	0.1835939	0.168881	0.164654	0.162668	0.182883	0.215913	0.266751
70	0.2831285	0.269515	0.264271	0.264378	0.271666	0.29317	0.327828

Из значений Err и Err1 видно, что наилучшие результаты достигаются в диапазоне значений k1 = [0.4;0.8]. Под словами наилучшие подразумевается, что при данном коэффициенте k1 ошибка вычислений минимальна.

Для более наглядного представления об изменении ошибки, построим графики зависимости Err от k1, они представлены на рисунках ниже:



Рис. 103. Зависимость изменения ошибки от коэффициента k1 для w = 30 мм.



Рис. 104. Зависимость изменения ошибки от коэффициента k1 для w = 35 мм.



Рис. 105. Зависимость изменения ошибки от коэффициента k1 для w = 40 мм.



Рис. 106. Зависимость изменения ошибки от коэффициента k1 для w = 45 мм.



Рис. 107. Зависимость изменения ошибки от коэффициента k1 для w = 50 мм.



Рис. 108. Зависимость изменения ошибки от коэффициента k1 для w = 55 мм.



Рис. 109. Зависимость изменения ошибки от коэффициента k1 для w = 60 мм.



Рис. 110. Зависимость изменения ошибки от коэффициента k1 для w = 70 мм

Также интересно наглядно увидеть как значения координат Xcont, Xcntr, полученных в Splen приближаются к соответствующим координатам из Deform, в зависимости от значения коэффициента k1.



Наглядно это видно на рисунках ниже:

Рис. 111. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для w = 30 мм.



Рис. 112. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для w = 35 мм.



Рис. 113. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для w = 40 мм.



Рис. 114. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для w = 45 мм.



Рис. 115. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для w = 50 мм.



Рис. 116. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для w = 55 мм.



Рис. 117. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для w = 60 мм.



Рис. 118. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для w = 70 мм.

Из этих графиков наглядно видно, при каких значениях коэффициента k1 результаты совпадения наилучшие.

Также имеются расчетные данные площадей сечений S. Посмотрим, насколько отличаются результаты из Deform и Splen. Для этого воспользуемся формулой (63)

Числовые значения Err_S представлены в таблице 30,30.1.

Таблица 30.

Значения Err_S.

Err_S								
w/k1	0	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	5.835622	3.758734	3.217485	2.986912	2.88604	2.802462	2.752262	2.696654
35	8.289935	5.324314	4.443993	3.908437	3.704267	3.532788	3.40638	3.293841
40	10.08406	6.023639	4.744328	3.936563	3.641205	3.376769	3.144155	2.902745
45	11.14167	6.064924	4.376783	3.224997	2.845163	2.451339	2.139266	1.844127
50	17.32223	10.97306	9.39216	7.46434	6.902442	6.42902	6.043613	5.671863
55	16.96772	9.129365	6.521617	4.908927	4.224414	3.710988	3.224934	2.795649
60	19.6337	10.24016	7.253163	5.369394	4.617788	3.987374	3.521954	2.999691
70	25.11871	12.49711	8.685382	6.340655	5.518696	4.758693	4.112644	3.578421

#### Таблица 30.1.

Значения Err_S.

Err_S							
w/k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	2.664739	2.648082	2.622494	2.590526	2.530711	2.478671	2.474326
35	3.152493	3.095511	2.978214	2.893194	2.752983	2.640006	2.465306
40	2.761234	2.55881	2.404672	2.259388	2.003712	1.764014	1.551743
45	1.592037	1.369721	1.135015	0.950111	0.590396	0.298021	0.033052
50	5.338336	5.055918	4.78607	4.555963	4.123567	3.767178	3.442181
55	2.426486	2.097848	1.817285	1.527763	1.049908	0.628355	0.257396
60	2.58863	2.194278	1.848623	1.572941	0.999776	0.558621	0.169155
70	3.091349	2.659825	2.231585	1.886459	1.271978	0.748464	0.320246

Наглядное представление об Err_S в зависимости от k1 увидим с помощью нижеприведенных рисунков:



Рис. 119. Зависимость изменения координат значения Err_S от коэффициента k1 для w = 30 мм.



Рис.120. Зависимость изменения координат значения Err_S от коэффициента k1 для w = 35 мм.



Рис. 121. Зависимость изменения координат значения Err_S от коэффициента k1 для w = 40 мм.



Рис. 122. Зависимость изменения координат значения Err_S от коэффициента k1 для w = 45 мм.



Рис. 123. Зависимость изменения координат значения Err_S от коэффициента k1 для w = 50 мм.



Рис. 124. Зависимость изменения координат значения Err_S от коэффициента k1 для w = 55 мм.



Рис. 125. Зависимость изменения координат значения Err_S от коэффициента k1 для w = 60 мм.



Рис. 126. Зависимость изменения координат значения Err_S от коэффициента k1 для w = 70 мм.

Из рисунков видно, что с увеличением коэффициента k1, площади сечений из Deform и Splen становятся ближе друг к другу.Начиная со значения k1 = 0.4, значение ошибок мало и очень близко. Также видно, что с увеличением толщины совпадение площадей наступает быстрей. В некоторых случаях площади и вовсе совпадают.

#### 6.3. Обжатие слябов круглого сечения на 10 мм

В предыдущих главах мы получили координаты Xcont, Xcntr, а также площадь сечения S для прокатанных заготовок. Посчитаем количественную ошибку результатов полученных в Deform и Splen. Для оценки ошибки по координатам воспользуемся формулой (61).

Величина Err показывает ошибку выраженную в мм^2.

Значения Егг представлены в таблицах 31,31.1.

Таблица 31.

Значения Err.

Err							
D\k1	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	2.082882	1.605859	1.327436	1.208457	1.105177	1.008578	0.932419
35	1.974374	1.464432	1.092489	0.954659	0.826786	0.710516	0.617377
40	2.601974	1.987919	1.561006	1.397243	0.704276	0.598975	0.507025
45	3.498078	2.838241	2.364966	1.13548	1.002794	0.888212	0.789118
50	7.766279	4.527195	3.954821	2.068585	1.894385	1.741291	1.574849
55	9.896323	5.862543	5.187043	4.954909	4.717208	2.430071	2.289561

# Таблица 31.1.

Значения Err.

Err							
D\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	0.872449	0.810992	0.762375	0.721994	0.659872	0.611547	0.577415
35	0.533956	0.460217	0.396068	0.339635	0.243229	0.170926	0.114466
40	0.426368	0.35985	0.298994	0.248611	0.16659	0.105949	0.062153
45	0.70867	0.63068	0.557535	0.501948	0.406681	0.016915	0.0045
50	1.496361	1.410892	1.308181	1.232883	1.085627	0.958187	0.856729
55	2.138492	2.026711	1.905806	1.809208	1.644192	1.494055	0.370226

Также посчитаем ошибку Err1, которая будет выражена в процентах. Формула для нее:

$$\operatorname{Err1} = \operatorname{Err*100/D}$$
(64)

D – значение диаметра заготовки для отдельного случая.

Численные значения Егг представлены в таблице 32, 32.1.

Таблица 32.

Значения Err.

Err 1							
D\k1	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	6.94294	5.352864	4.424786	4.028191	3.683924	3.361926	3.108063
35	5.641067	4.184092	3.121397	2.727597	2.362244	2.030045	1.763935
40	6.504936	4.969797	3.902515	3.493107	1.760691	1.497438	1.267561
45	7.773506	6.307202	5.25548	2.523289	2.22843	1.973806	1.753596
50	15.53256	9.054391	7.909642	4.13717	3.78877	3.482582	3.149699
55	17.99331	10.65917	9.430987	9.008926	8.576742	4.418312	4.162838
Таблица 32.1.

Значения Err.

Err1							
D\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	2.908163	2.703308	2.541249	2.406646	2.199573	2.03849	1.924717
35	1.525588	1.314905	1.131624	0.970384	0.69494	0.48836	0.327046
40	1.065921	0.899626	0.747486	0.621527	0.416476	0.264871	0.155382
45	1.574823	1.401511	1.238968	1.11544	0.903736	0.037588	0.010001
50	2.992722	2.821784	2.616363	2.465766	2.171254	1.916373	1.713459
55	3.888168	3.684929	3.465101	3.289469	2.98944	2.716464	0.673138

Желтым цветом отмечены наименьшие значения ошибки для каждого диаметра (D).

Из значений Err и Err1 видно, что наилучшие результаты достигается при k1 = 1. Под словами наилучшие подразумевается, что при данном коэффициенте k1 ошибка вычислений минимальна.

Для более наглядного представления об изменении ошибки, построим графики зависимости Err от k1, они представлены на рисунках ниже:



Рис. 127. Зависимость изменения ошибки от коэффициента k1 для D = 30 мм.



Рис. 128. Зависимость изменения ошибки от коэффициента k1 для D = 35 мм.



Рис. 129. Зависимость изменения ошибки от коэффициента k1 для D = 40 мм.



Рис. 130. Зависимость изменения ошибки от коэффициента k1 для D = 45 мм.



Рис. 131. Зависимость изменения ошибки от коэффициента k1 для D = 50 мм.





Также интересно наглядно увидеть как значения координат Xcont, Xcntr, полученных в Splen приближаются к соответствующим координатам из Deform, в зависимости от значения коэффициента k1.

Наглядно это видно на рисунках ниже:



Рис. 133. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для D = 30 мм.



Рис. 134. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для D = 35 мм.



Рис. 135. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для D = 40 мм.



Рис. 136. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для D = 45 мм.



Рис. 137. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для D = 50 мм.



Рис. 138. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для D = 55 мм.

Из этих графиков наглядно видно, при каких значениях коэффициента k1 результаты совпадения наилучшие.

Также имеются расчетные данные площадей сечений S. Посмотрим, насколько отличаются результаты из Deform и Splen. Для этого воспользуемся формулой (63).

Числовые значения Err_S представлены в таблице 33,33.1.

Таблица 33.

Значения Err_S.

Err_S							
D\k1	0.1	0.2	0.3	0.35	0.4	0.45	0.5
30	12.33877	10.87735	9.901025	9.435998	8.995501	8.533716	8.150664
35	13.7069	12.02754	10.58663	10.03562	9.484738	8.917171	8.441934
40	15.34219	13.01329	11.28876	10.70767	9.963649	9.375818	8.839199
45	16.43609	13.8782	11.8924	11.24634	10.34869	9.877123	9.202944
50	19.20164	15.94558	13.8817	13.01395	12.00531	11.56241	10.955
55	15.45166	11.95453	9.584824	8.395989	7.776059	7.094133	6.303198

- Таблица 33.1.
- Значения Err_S.

Err_S							
D\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	7.821879	7.459244	7.14137	6.843954	6.307522	5.787065	5.302884
35	8.007911	7.603208	7.214204	6.858602	6.184015	5.585668	5.023103
40	8.367853	7.870787	7.38914	7.000957	6.253453	5.576146	4.983749
45	8.653294	8.096924	7.658974	7.334727	6.498813	5.755234	5.1072
50	10.11522	9.437006	9.18674	8.706794	7.755599	7.151588	6.537053
55	5.579334	5.268013	4.836253	4.178688	3.372147	2.532939	2.037595

Наглядное представление об Err_S в зависимости от k1 увидим с помощью нижеприведенных рисунков:



Рис. 139. Зависимость изменения координат значения Err_S от коэффициента k1 для D = 30 мм.



Рис.140. Зависимость изменения координат значения Err_S от коэффициента k1 для D = 35 мм.



Рис. 141. Зависимость изменения координат значения Err_S от коэффициента k1 для D = 40 мм.



Рис. 142. Зависимость изменения координат значения Err_S от коэффициента k1 для D = 45 мм.



Рис. 143. Зависимость изменения координат значения Err_S от коэффициента k1 для D = 50 мм.



Рис. 144. Зависимость изменения координат значения Err_S от коэффициента k1 для D = 55 мм.

Из графиков видно, что с увеличением коэффициента k1 площади сечений из Deform и Splen становятся ближе друг к другу, также видно, что с увеличением диаметра совпадение площадей наступает быстрей. И как и для случая с блоком начиная с k1=0.4, ошибка уменьшается и последующие значения лежат близко друг к другу, что является плюсом.

## 6.4. Обжатие слябов круглого сечения на 5 мм

В предыдущих главах мы получили координаты Xcont, Xcntr, а также площадь сечения S для прокатанных заготовок. Посчитаем количественную ошибку результатов полученных в Deform и Splen. Для оценки ошибки по координатам воспользуемся формулой (61).

Величина Err показывает ошибку выраженную в мм^2.

Значения Егг представлены в таблицах 33,33.1.

Таблица 33.

Значения Err.

Err						
D\k	0.2	0.3	0.35	0.4	0.45	0.5
30	0.369227	0.292321	0.263021	0.239604	0.215713	0.195397
40	0.679695	0.634643	0.138817	0.137907	0.143192	0.145266
45	0.554891	0.041003	0.027333	0.019981	0.014676	0.01077
50	2.362908	0.875107	0.831001	0.787174	0.753142	0.093074
55	2.845421	2.660175	2.570865	2.490995	0.932556	0.898335

### Таблица 33.1.

Значения Err.

Err							
D\k	0.55	0.6	0.65	0.7	0.8	0.9	1
30	0.1802859	0.164752	0.150182	0.0138	0.01827	0.026103	0.035851
40	0.1488359	0.152459	0.162495	0.165723	0.207954	0.250304	0.283527
45	0.0099874	0.007614	0.008019	0.209389	0.249281	0.285816	0.326466
50	0.0806803	0.071986	0.065259	0.055985	0.04581	0.037961	0.032871
55	0.8591014	0.821161	0.783601	0.749446	0.068287	0.055029	0.045301

Также посчитаем ошибку Err1, которая будет выражена в процентах, воспользуемся формулой (64)

D – значение диаметра заготовки для отдельного случая.

Численные значения Err представлены в таблице 34, 34.1.

### Таблица 34.

### Значения Err1.

Err1						
D\k	0.2	0.3	0.35	0.4	0.45	0.5
30	1.230756	0.974403	0.876737	0.798679	0.719045	0.651324
40	1.699237	1.586607	0.347041	0.344767	0.35798	0.363166
45	1.233092	0.091118	0.06074	0.044403	0.032612	0.023933
50	4.725817	1.750213	1.662002	1.574347	1.506284	0.186148
55	5.173493	4.836683	4.6743	4.529082	1.695556	1.633337

Таблица 34.1.

Значения Err1.

Err1							
w(D)\k	0.55	0.6	0.65	0.7	0.8	0.9	1
30	0.6009529	0.549172	0.500605	0.046	0.060898	0.08701	0.119505
40	0.3720898	0.381146	0.406239	0.414307	0.519886	0.625759	0.708817
45	0.0221942	0.01692	0.01782	0.465309	0.553958	0.635147	0.725479
50	0.1613606	0.143973	0.130517	0.11197	0.09162	0.075921	0.065741
55	1.5620026	1.493021	1.424729	1.362628	0.124157	0.100052	0.082365

Желтым цветом отмечены наименьшие значения ошибки для каждого диаметра (D).

Из значений Err и Err1 видно, что наилучшие результаты достигается прик k1 = [0.4;1]. Под словами наилучшие подразумевается, что при данном коэффициенте k1 ошибка вычислений минимальна.

Для более наглядного представления об изменении ошибки, построим графики зависимости Err от k1, они представлены на рисунках ниже:



Рис. 145. Зависимость изменения ошибки от коэффициента k1 для D = 30 мм.



Рис. 146. Зависимость изменения ошибки от коэффициента k1 для D = 40 мм.



Рис. 147. Зависимость изменения ошибки от коэффициента k1 для D = 45 мм.



Рис. 148. Зависимость изменения ошибки от коэффициента k1 для D = 50 мм.



Рис. 149. Зависимость изменения ошибки от коэффициента k1 для D = 55 мм.

Также интересно наглядно увидеть как значения координат Xcont, Xcntr, полученных в Splen приближаются к соответствующим координатам из Deform, в зависимости от значения коэффициента k1. Скачки на графиках объясняются дискретностью модели.

Наглядно это видно на рисунках ниже:



Рис. 150. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для D = 30 мм.



Рис. 151. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для D = 40 мм.



Рис. 152. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для D = 45 мм.



Рис. 153. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для D = 50 мм.



Рис. 154. Зависимость изменения координат Xcont, Xcntr от коэффициента k1 для D = 55 мм.

Из этих графиков наглядно видно, при каких значениях коэффициента k1 результаты совпадения наилучшие.

Также имеются расчетные данные площадей сечений S. Посмотрим, насколько отличаются результаты из Deform и Splen. Для этого воспользуемся формулой (63).

Числовые значения Err_S представлены в таблице 35,35.1.

# Таблица 35.

### Значения Err_S.

Err_S						
D\k1	0.2	0.3	0.35	0.4	0.45	0.5
30	2.774873	2.285519	2.060307	1.910786	1.724732	1.534727
40	1.918882	1.241637	1.05993	0.810036	0.660894	0.516084
45	1.473157	0.749897	0.519775	0.369354	0.145998	-0.02632
50	1.021278	0.198522	0.002149	-0.13902	-0.37368	-0.50293
55	0.464087	-0.29916	-0.5334	-0.77257	-0.93532	-1.06386

# Таблица 35.1.

Значения Err_S.

Err_S							
D\k1	0.55	0.6	0.65	0.7	0.8	0.9	1
30	1.384336	1.234816	1.154384	1.027623	0.831789	0.639345	0.467213
40	0.323481	0.185294	-0.06996	-0.29245	-0.49623	-0.4962	-0.70549
45	-0.25517	-0.2522	-0.3372	-0.51895	-0.7801	-0.89148	-1.06785
50	-0.67247	-0.78369	-0.88406	-0.91721	-1.09734	-1.22324	-1.29839
55	-1.21884	-1.17828	-1.18488	-1.30148	-1.47858	-1.55166	-1.60787

Наглядное представление об Err_S в зависимости от k1 увидим с помощью ниже приведенных рисунков:



Рис. 155. Зависимость изменения координат значения Err_S от коэффициента k1 для D = 30 мм.



Рис. 156. Зависимость изменения координат значения Err_S от коэффициента k1 для D = 40 мм.



Рис. 157. Зависимость изменения координат значения Err_S от коэффициента k1 для D = 45 мм.



Рис. 158. Зависимость изменения координат значения Err_S от коэффициента k1 для D = 50 мм.



Рис. 159. Зависимость изменения координат значения Err_S от коэффициента k1 для D = 55 мм.

Из графиков видно, что с увеличением коэффициента k1 площади сечений из Deform и Splen становятся ближе друг к другу, также видно, что с увеличением диаметра совпадение площадей наступает быстрей. При обжатии на 5 мм, совпадение наступает даже при малых коэффициентах значения k1.

### Заключение

В данной работе были выполнены расчеты в САПР DEFORM, а также в пакете Splen-R (реализующий методику 2.5D). Был произведен сравнительный анализ результатов, с целью нахождение наилучшего поправочного коэффициента k1, который используется в методе 2.5D для учета сдвиговых деформаций, возникающих между плоскими сечениями. Расчеты производились для случая прокатки слябов с квадратным и круглым сечением, на гладкой бочке. Абсолютное обжатие составляло 10 и 5 мм.

Проведенные расчеты показали, что применение методики учета сдвиговых деформаций возникающих между плоскими сечениями, при решении задачи прокатки по средствам методики 2.5D позволяет улучшить получаемых результатов. Проведен анализ адекватность влияния эмпирического коэффициента k1 на величину отклонения от прогнозов формоизменения материалов по сравнению с трехмерным моделированием. Для слябов с квадратным сечением, как для обжатия на 10 мм, так и для обжатия на 5 мм, лучшим оказались значения k1 лежащие в промежутке [0.4;0.8]. Для слябов с круглым сечением, увеличение коэффициента k1 приводит к уменьшению расхождений геометрий образца по сравнению с трехмерным случаем. При этом абсолютные значения ошибок в случае прокатки круглого прутка значительно меньше, чем при прокатке прутка квадратного сечения.

Таким образом, применение методики учета сдвиговых деформаций при решении задачи прокатки методом 2.5.D моделирования со значением поправочного коэффициента 0.6 приводит к отклонениям от трехмерной модели не превышающих десятых долей процента. Кроме того специфика методики 2.5.D позволяет решать задачи формоизменения металлов при прокатке за значительно более короткое время, чем необходимо при решении трехмерной задачи.

127

Список литературы

[1] – Чумаченко Е.Н., Логашина И.В. Математическое моделирование течения метала при прокатке. Учебное пособие. – Моск. Гос. Ин-т электроники и математики – М., 2005,147с

[2] – Чумаченко Е.Н. Математическое моделирование пластического формоизменения материалов при обработке материалов давлением – М.:МГИЭМ, 1998.157с

[3] – Чумаченко Е.Н., Аксенов С.А., Логашина И.В. математическое моделирование и энергосбережение при прокате в калибрах – Металлург.
 2010 - №8 номер 34-37с.

[4] - Чумаченко Е.Н., Скороходов А.Н., Александрович А.И. К вопросу о применении МКЭ в задачах о деформировании несжимаемых сред. Изв.
Вузов. Черная металлургия – 1985 - №9. – С.89-92.

[5] – Сегерлинд Л. Применение метода конечных элементов – М.:Мир,1979. –
 392 с.

 [6] – Степанский Л.Г. Расчеты процессов обработки металлов давлением – М.:Машиностроение, 1979. – 215с.

[7] – Чумаченко Е.Н., Логашина И.В. Математическое моделирование и оптимизация процессов деформирования материалов при обработке давление
- М.:ООО НПП ЭКОМЕТ, 2008.- 400с.

[8] – Исаченков Е.И. Контактное трение и смазки при ОМД – М.: Машиностроение, 1978. – 208 с.

[9] – Макушок Е.М. Механика трения – Минск: Наука и техника, 1974. – 254с.

[10] – Колмогоров В.Л. Механика ОМД – М: Металлургия, 1986. – 687.

[11] – Калмыков В.В., Чумаченко Е.Н., Ананьев И.Н. Способ задания задания граничных условий при решении задач обработки давлением – Изв. вузов Машиностроение. – 1985. - №12 – с 122 – 125.

[12] – Соколов Л.Д. Сопротивление металлов пластической деформации – М: Металлургиздат, 1963. – 284 с. [13] – Чертавских А.К., Белосевич В.К. Трение итехнологическая смазка при обработке металлов давлением. – М.: Металлургия, 1968. – 364 с.

[14] – Хайкин Б.Е., В.В. Козлов. Единая математическая модель процесов
прокатки простых и фасонных профилей. – Свердловск:УПИ, 1983. – Вып. 1.
- С. 58 – 61.

[15] – Целиков А.И. Теория расчета усилий в прокатных станах. – М.: Металлургиздат, 1962. – 494 с.